On‐chip label‐free impedance‐based detection of antibiotic permeation
Biosensors are analytical tools used for the analysis of biomaterial samples and provide an understanding about the biocomposition, structure, and function of biomolecules and/or biomechanisms by converting the biological response into an electrical and/or optical signal. In particular, with the ris...
Gespeichert in:
Veröffentlicht in: | IET nanobiotechnology 2021-02, Vol.15 (1), p.100-106 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 1 |
container_start_page | 100 |
container_title | IET nanobiotechnology |
container_volume | 15 |
creator | Kaur, Jaspreet Ghorbanpoor, Hamed Öztürk, Yasin Kaygusuz, Özge Avcı, Hüseyin Darcan, Cihan Trabzon, Levent Güzel, Fatma D. |
description | Biosensors are analytical tools used for the analysis of biomaterial samples and provide an understanding about the biocomposition, structure, and function of biomolecules and/or biomechanisms by converting the biological response into an electrical and/or optical signal. In particular, with the rise in antibiotic resistance amongst pathogenic bacteria, the study of antibiotic activity and transport across cell membranes in the field of biosensors has been gaining widespread importance. Herein, for the rapid and label‐free detection of antibiotic permeation across a membrane, a microelectrode integrated microfluidic device is presented. The integrated chip consists of polydimethylsiloxane based microfluidic channels bonded onto microelectrodes on‐glass and enables us to recognize the antibiotic permeation across a membrane into the model membranes based on electrical impedance measurement, while also allowing optical monitoring. Impedance testing is label free and therefore allows the detection of both fluorescent and non‐fluorescent antibiotics. As a model membrane, Giant Unilamellar Vesicles (GUVs) are used and impedance measurements were performed by a precision inductance, capacitance, and resistance metre. The measured signal recorded from the device was used to determine the change in concentration inside and outside of the GUVs. We have found that permeation of antibiotic molecules can be easily monitored over time using the proposed integrated device. The results also show a clear difference between bilayer permeation that occurs through the lipidic bilayer and porin‐mediated permeation through the porin channels inserted in the lipid bilayer. |
doi_str_mv | 10.1049/nbt2.12019 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2585925410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A732617525</galeid><doaj_id>oai_doaj_org_article_69849fa1ec574160ad15803a31760a5d</doaj_id><sourcerecordid>A732617525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5539-8695077eb0e6d6aa34a2f2b683fdea2ffe77c975eee9342ceeb6cfbaa92e658c3</originalsourceid><addsrcrecordid>eNp9kkFvFCEUgCdGY2v14g8wk3gxJrsFZoDhYlKb2jY29lITb-QNPLY0MzAys5re-hP8jf4S2U7ddBNjOACPj48HvKJ4TcmSklodhnZiS8oIVU-KfSo5XTSSf3u6Hdd0r3gxjjeEcM6r5nmxV9VC1ZKp_eLzZfh998tc-6HsoMUuT1xCLH0_oIVgMAdaGNGWFic0k4-hjK6EMPnWx8mbcsDUI2wWXhbPHHQjvnroD4qvn06ujs8WF5en58dHFwuTj1eLRihOpMSWoLACoKqBOdaKpnIW89ChlEZJjoiqqplBbIVxLYBiKHhjqoPifPbaCDd6SL6HdKsjeH0fiGmlIeXUOtRCNbVyQNHw_AyCgKW8IRVUVOYJt9n1YXYN67ZHazBMCbod6e5K8Nd6FX_oRkgulciCdw-CFL-vcZx070eDXQcB43rUjDdcMV5TktG3M7qCnJoPLmaj2eD6SFZM5O9iPFPLf1C5Wey9iQGdz_GdDe_nDSbFcUzottlTojcFojcFou8LJMNvHt93i_6tiAzQGfiZj7n9j0p_-XjFZukfGlTIaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585925410</pqid></control><display><type>article</type><title>On‐chip label‐free impedance‐based detection of antibiotic permeation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Kaur, Jaspreet ; Ghorbanpoor, Hamed ; Öztürk, Yasin ; Kaygusuz, Özge ; Avcı, Hüseyin ; Darcan, Cihan ; Trabzon, Levent ; Güzel, Fatma D.</creator><creatorcontrib>Kaur, Jaspreet ; Ghorbanpoor, Hamed ; Öztürk, Yasin ; Kaygusuz, Özge ; Avcı, Hüseyin ; Darcan, Cihan ; Trabzon, Levent ; Güzel, Fatma D.</creatorcontrib><description>Biosensors are analytical tools used for the analysis of biomaterial samples and provide an understanding about the biocomposition, structure, and function of biomolecules and/or biomechanisms by converting the biological response into an electrical and/or optical signal. In particular, with the rise in antibiotic resistance amongst pathogenic bacteria, the study of antibiotic activity and transport across cell membranes in the field of biosensors has been gaining widespread importance. Herein, for the rapid and label‐free detection of antibiotic permeation across a membrane, a microelectrode integrated microfluidic device is presented. The integrated chip consists of polydimethylsiloxane based microfluidic channels bonded onto microelectrodes on‐glass and enables us to recognize the antibiotic permeation across a membrane into the model membranes based on electrical impedance measurement, while also allowing optical monitoring. Impedance testing is label free and therefore allows the detection of both fluorescent and non‐fluorescent antibiotics. As a model membrane, Giant Unilamellar Vesicles (GUVs) are used and impedance measurements were performed by a precision inductance, capacitance, and resistance metre. The measured signal recorded from the device was used to determine the change in concentration inside and outside of the GUVs. We have found that permeation of antibiotic molecules can be easily monitored over time using the proposed integrated device. The results also show a clear difference between bilayer permeation that occurs through the lipidic bilayer and porin‐mediated permeation through the porin channels inserted in the lipid bilayer.</description><identifier>ISSN: 1751-8741</identifier><identifier>EISSN: 1751-875X</identifier><identifier>DOI: 10.1049/nbt2.12019</identifier><identifier>PMID: 34694729</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Analysis ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Bacteria ; biochemistry ; bioelectric phenomena ; biological techniques ; biomembranes ; bioMEMS ; cellular biophysics ; Detectors ; Drug resistance in microorganisms ; Electric Impedance ; Electric properties ; Lab-On-A-Chip Devices ; Lipid Bilayers ; Membrane lipids ; Microfluidic Analytical Techniques ; Original Research Paper ; Original Research Papers</subject><ispartof>IET nanobiotechnology, 2021-02, Vol.15 (1), p.100-106</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>2021 The Authors. IET Nanobiotechnology published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5539-8695077eb0e6d6aa34a2f2b683fdea2ffe77c975eee9342ceeb6cfbaa92e658c3</citedby><cites>FETCH-LOGICAL-c5539-8695077eb0e6d6aa34a2f2b683fdea2ffe77c975eee9342ceeb6cfbaa92e658c3</cites><orcidid>0000-0002-2883-9241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675796/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675796/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,2102,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34694729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaur, Jaspreet</creatorcontrib><creatorcontrib>Ghorbanpoor, Hamed</creatorcontrib><creatorcontrib>Öztürk, Yasin</creatorcontrib><creatorcontrib>Kaygusuz, Özge</creatorcontrib><creatorcontrib>Avcı, Hüseyin</creatorcontrib><creatorcontrib>Darcan, Cihan</creatorcontrib><creatorcontrib>Trabzon, Levent</creatorcontrib><creatorcontrib>Güzel, Fatma D.</creatorcontrib><title>On‐chip label‐free impedance‐based detection of antibiotic permeation</title><title>IET nanobiotechnology</title><addtitle>IET Nanobiotechnol</addtitle><description>Biosensors are analytical tools used for the analysis of biomaterial samples and provide an understanding about the biocomposition, structure, and function of biomolecules and/or biomechanisms by converting the biological response into an electrical and/or optical signal. In particular, with the rise in antibiotic resistance amongst pathogenic bacteria, the study of antibiotic activity and transport across cell membranes in the field of biosensors has been gaining widespread importance. Herein, for the rapid and label‐free detection of antibiotic permeation across a membrane, a microelectrode integrated microfluidic device is presented. The integrated chip consists of polydimethylsiloxane based microfluidic channels bonded onto microelectrodes on‐glass and enables us to recognize the antibiotic permeation across a membrane into the model membranes based on electrical impedance measurement, while also allowing optical monitoring. Impedance testing is label free and therefore allows the detection of both fluorescent and non‐fluorescent antibiotics. As a model membrane, Giant Unilamellar Vesicles (GUVs) are used and impedance measurements were performed by a precision inductance, capacitance, and resistance metre. The measured signal recorded from the device was used to determine the change in concentration inside and outside of the GUVs. We have found that permeation of antibiotic molecules can be easily monitored over time using the proposed integrated device. The results also show a clear difference between bilayer permeation that occurs through the lipidic bilayer and porin‐mediated permeation through the porin channels inserted in the lipid bilayer.</description><subject>Analysis</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>biochemistry</subject><subject>bioelectric phenomena</subject><subject>biological techniques</subject><subject>biomembranes</subject><subject>bioMEMS</subject><subject>cellular biophysics</subject><subject>Detectors</subject><subject>Drug resistance in microorganisms</subject><subject>Electric Impedance</subject><subject>Electric properties</subject><subject>Lab-On-A-Chip Devices</subject><subject>Lipid Bilayers</subject><subject>Membrane lipids</subject><subject>Microfluidic Analytical Techniques</subject><subject>Original Research Paper</subject><subject>Original Research Papers</subject><issn>1751-8741</issn><issn>1751-875X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9kkFvFCEUgCdGY2v14g8wk3gxJrsFZoDhYlKb2jY29lITb-QNPLY0MzAys5re-hP8jf4S2U7ddBNjOACPj48HvKJ4TcmSklodhnZiS8oIVU-KfSo5XTSSf3u6Hdd0r3gxjjeEcM6r5nmxV9VC1ZKp_eLzZfh998tc-6HsoMUuT1xCLH0_oIVgMAdaGNGWFic0k4-hjK6EMPnWx8mbcsDUI2wWXhbPHHQjvnroD4qvn06ujs8WF5en58dHFwuTj1eLRihOpMSWoLACoKqBOdaKpnIW89ChlEZJjoiqqplBbIVxLYBiKHhjqoPifPbaCDd6SL6HdKsjeH0fiGmlIeXUOtRCNbVyQNHw_AyCgKW8IRVUVOYJt9n1YXYN67ZHazBMCbod6e5K8Nd6FX_oRkgulciCdw-CFL-vcZx070eDXQcB43rUjDdcMV5TktG3M7qCnJoPLmaj2eD6SFZM5O9iPFPLf1C5Wey9iQGdz_GdDe_nDSbFcUzottlTojcFojcFou8LJMNvHt93i_6tiAzQGfiZj7n9j0p_-XjFZukfGlTIaw</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Kaur, Jaspreet</creator><creator>Ghorbanpoor, Hamed</creator><creator>Öztürk, Yasin</creator><creator>Kaygusuz, Özge</creator><creator>Avcı, Hüseyin</creator><creator>Darcan, Cihan</creator><creator>Trabzon, Levent</creator><creator>Güzel, Fatma D.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Hindawi-IET</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2883-9241</orcidid></search><sort><creationdate>202102</creationdate><title>On‐chip label‐free impedance‐based detection of antibiotic permeation</title><author>Kaur, Jaspreet ; Ghorbanpoor, Hamed ; Öztürk, Yasin ; Kaygusuz, Özge ; Avcı, Hüseyin ; Darcan, Cihan ; Trabzon, Levent ; Güzel, Fatma D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5539-8695077eb0e6d6aa34a2f2b683fdea2ffe77c975eee9342ceeb6cfbaa92e658c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>biochemistry</topic><topic>bioelectric phenomena</topic><topic>biological techniques</topic><topic>biomembranes</topic><topic>bioMEMS</topic><topic>cellular biophysics</topic><topic>Detectors</topic><topic>Drug resistance in microorganisms</topic><topic>Electric Impedance</topic><topic>Electric properties</topic><topic>Lab-On-A-Chip Devices</topic><topic>Lipid Bilayers</topic><topic>Membrane lipids</topic><topic>Microfluidic Analytical Techniques</topic><topic>Original Research Paper</topic><topic>Original Research Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Jaspreet</creatorcontrib><creatorcontrib>Ghorbanpoor, Hamed</creatorcontrib><creatorcontrib>Öztürk, Yasin</creatorcontrib><creatorcontrib>Kaygusuz, Özge</creatorcontrib><creatorcontrib>Avcı, Hüseyin</creatorcontrib><creatorcontrib>Darcan, Cihan</creatorcontrib><creatorcontrib>Trabzon, Levent</creatorcontrib><creatorcontrib>Güzel, Fatma D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IET nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Jaspreet</au><au>Ghorbanpoor, Hamed</au><au>Öztürk, Yasin</au><au>Kaygusuz, Özge</au><au>Avcı, Hüseyin</au><au>Darcan, Cihan</au><au>Trabzon, Levent</au><au>Güzel, Fatma D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On‐chip label‐free impedance‐based detection of antibiotic permeation</atitle><jtitle>IET nanobiotechnology</jtitle><addtitle>IET Nanobiotechnol</addtitle><date>2021-02</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>100</spage><epage>106</epage><pages>100-106</pages><issn>1751-8741</issn><eissn>1751-875X</eissn><abstract>Biosensors are analytical tools used for the analysis of biomaterial samples and provide an understanding about the biocomposition, structure, and function of biomolecules and/or biomechanisms by converting the biological response into an electrical and/or optical signal. In particular, with the rise in antibiotic resistance amongst pathogenic bacteria, the study of antibiotic activity and transport across cell membranes in the field of biosensors has been gaining widespread importance. Herein, for the rapid and label‐free detection of antibiotic permeation across a membrane, a microelectrode integrated microfluidic device is presented. The integrated chip consists of polydimethylsiloxane based microfluidic channels bonded onto microelectrodes on‐glass and enables us to recognize the antibiotic permeation across a membrane into the model membranes based on electrical impedance measurement, while also allowing optical monitoring. Impedance testing is label free and therefore allows the detection of both fluorescent and non‐fluorescent antibiotics. As a model membrane, Giant Unilamellar Vesicles (GUVs) are used and impedance measurements were performed by a precision inductance, capacitance, and resistance metre. The measured signal recorded from the device was used to determine the change in concentration inside and outside of the GUVs. We have found that permeation of antibiotic molecules can be easily monitored over time using the proposed integrated device. The results also show a clear difference between bilayer permeation that occurs through the lipidic bilayer and porin‐mediated permeation through the porin channels inserted in the lipid bilayer.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>34694729</pmid><doi>10.1049/nbt2.12019</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2883-9241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8741 |
ispartof | IET nanobiotechnology, 2021-02, Vol.15 (1), p.100-106 |
issn | 1751-8741 1751-875X |
language | eng |
recordid | cdi_proquest_miscellaneous_2585925410 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central |
subjects | Analysis Anti-Bacterial Agents - pharmacology Antibiotics Bacteria biochemistry bioelectric phenomena biological techniques biomembranes bioMEMS cellular biophysics Detectors Drug resistance in microorganisms Electric Impedance Electric properties Lab-On-A-Chip Devices Lipid Bilayers Membrane lipids Microfluidic Analytical Techniques Original Research Paper Original Research Papers |
title | On‐chip label‐free impedance‐based detection of antibiotic permeation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%E2%80%90chip%20label%E2%80%90free%20impedance%E2%80%90based%20detection%20of%20antibiotic%20permeation&rft.jtitle=IET%20nanobiotechnology&rft.au=Kaur,%20Jaspreet&rft.date=2021-02&rft.volume=15&rft.issue=1&rft.spage=100&rft.epage=106&rft.pages=100-106&rft.issn=1751-8741&rft.eissn=1751-875X&rft_id=info:doi/10.1049/nbt2.12019&rft_dat=%3Cgale_doaj_%3EA732617525%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585925410&rft_id=info:pmid/34694729&rft_galeid=A732617525&rft_doaj_id=oai_doaj_org_article_69849fa1ec574160ad15803a31760a5d&rfr_iscdi=true |