Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride

Metformin and empagliflozin combined therapy may have complementary effects that go beyond the well-recognized targets of their monotherapy through AMPK activation. Therefore, the current study was designed to investigate for the first time the hepatoprotective effects of such combination therapy in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2021-12, Vol.286, p.120070-120070, Article 120070
Hauptverfasser: Abdelhamid, Amir Mohamed, Youssef, Mahmoud E., Abd El-Fattah, Eslam E., Gobba, Naglaa A., Gaafar, Ahmed Gaafar Ahmed, Girgis, Samuel, Shata, Ahmed, Hafez, Abdel-Moneim, El-Ahwany, Eman, Amin, Noha A., Shahien, Mohamed Awad, Abd-Eldayem, Marwa A., Abou-Elrous, Magdy, Saber, Sameh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120070
container_issue
container_start_page 120070
container_title Life sciences (1973)
container_volume 286
creator Abdelhamid, Amir Mohamed
Youssef, Mahmoud E.
Abd El-Fattah, Eslam E.
Gobba, Naglaa A.
Gaafar, Ahmed Gaafar Ahmed
Girgis, Samuel
Shata, Ahmed
Hafez, Abdel-Moneim
El-Ahwany, Eman
Amin, Noha A.
Shahien, Mohamed Awad
Abd-Eldayem, Marwa A.
Abou-Elrous, Magdy
Saber, Sameh
description Metformin and empagliflozin combined therapy may have complementary effects that go beyond the well-recognized targets of their monotherapy through AMPK activation. Therefore, the current study was designed to investigate for the first time the hepatoprotective effects of such combination therapy in the carbon tetrachloride (CCl4)-induced hepatic fibrosis model in mice. Determination of liver enzymes and the liver content of oxidative stress parameters, and hydroxyproline were performed biochemically. ELISA was performed to measure PDGF-BB, TNF-α, TGF-β, TIMP-1, AMPK, p-mTOR, NF-κB P65 binding activity, p38 MAPKα, JNK1/2 and ERK1/2. Real-time qPCR was conducted to determine Col1a1 and α-SMA. In addition, histopathological examination using H&E and Masson's trichrome stain were performed for determination of histopathological changes. Empagliflozin inhibited the activation of p38 MAPK and ERK1/2 and exhibited a weak AMPKα stimulation. On the other hand, metformin exerted a more robust stimulatory action on the AMPKα that was accompanied by a notable decrease in the NF-κB nuclear binding activity and a decline in the p-mTOR levels. Nevertheless, the effect of metformin on MAPK kinases was insignificant. Our results revealed that blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhanced the antifibrotic effect of metformin and augmented its AMPK-induced NF-κB inactivation. As diabetes is one of the most common risk factors for liver fibrosis, the use of antidiabetic drugs is expected to improve therapeutic outcome. Therefore, metformin/empagliflozin combined therapy could be promising in preventing hepatic inflammation and fibrosis via exhibiting complementary effects particularly in diabetic patients. [Display omitted] •Metformin/empagliflozin demonstrated hepatoprotective activity in vitro and in vivo.•Metformin/empagliflozin prolonged survival of mice with liver fibrosis.•Empagliflozin inhibited the activation of p38 MAPK and ERK1/2.•Metformin activated AMPKα and inhibited NF-κB nuclear binding activity.•Metformin/empagliflozin exhibited prominent anti-inflammatory effects.
doi_str_mv 10.1016/j.lfs.2021.120070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2585917882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024320521010572</els_id><sourcerecordid>2605659435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3390-fc5dacd80b1438277e4231cf8961a581a2e034c9c4a8549373473cbb33245b833</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhyMEokvhAbggS1y4ZOs_ceKIU1u1gNpCheBsOc5kd1aJvbWdQnkrrjwBpz4TLls4cOBgjaz55jeWv6J4zuiSUVYfbJbjEJeccrZknNKGPigWTDVtSWvBHhYLSnlVCk7lXvEkxg2lVMpGPC72RFUrVbdyUfw8GmeX0K3IVihycXh5dvudGNeTk49n7IATYxNeY0KIpLshMG3NasRh9N_QEXBr42zupDXkmYQDdsEntASGAWwifiATpMGHKdN3oWZeTeBSJJjP4cXlWYmuny305P1pefvjiKD7vdAk9C5fyIQWck3-K1qTMvcF05pYE7rcT5CCsevRB-zhafFoMGOEZ_d1v_h8evLp-G15_uHNu-PD89IK0dJysLI3tle0Y5VQvGmg4oLZQbU1M1Ixw4GKyra2MkpWrWhE1QjbdULwSnZKiP3i1S53G_zVDDHpCaOFcTQO_Bw1l0q2rFGKZ_TlP-jGz8Hl12leU1nLthIyU2xH2eBjDDDobcDJhBvNqL7TrDc6a9Z3mvVOc555cZ88dxP0fyf-eM3A6x0A-SuuEYKOFiHL6jFkM7r3-J_4X6dSulw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605659435</pqid></control><display><type>article</type><title>Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Abdelhamid, Amir Mohamed ; Youssef, Mahmoud E. ; Abd El-Fattah, Eslam E. ; Gobba, Naglaa A. ; Gaafar, Ahmed Gaafar Ahmed ; Girgis, Samuel ; Shata, Ahmed ; Hafez, Abdel-Moneim ; El-Ahwany, Eman ; Amin, Noha A. ; Shahien, Mohamed Awad ; Abd-Eldayem, Marwa A. ; Abou-Elrous, Magdy ; Saber, Sameh</creator><creatorcontrib>Abdelhamid, Amir Mohamed ; Youssef, Mahmoud E. ; Abd El-Fattah, Eslam E. ; Gobba, Naglaa A. ; Gaafar, Ahmed Gaafar Ahmed ; Girgis, Samuel ; Shata, Ahmed ; Hafez, Abdel-Moneim ; El-Ahwany, Eman ; Amin, Noha A. ; Shahien, Mohamed Awad ; Abd-Eldayem, Marwa A. ; Abou-Elrous, Magdy ; Saber, Sameh</creatorcontrib><description>Metformin and empagliflozin combined therapy may have complementary effects that go beyond the well-recognized targets of their monotherapy through AMPK activation. Therefore, the current study was designed to investigate for the first time the hepatoprotective effects of such combination therapy in the carbon tetrachloride (CCl4)-induced hepatic fibrosis model in mice. Determination of liver enzymes and the liver content of oxidative stress parameters, and hydroxyproline were performed biochemically. ELISA was performed to measure PDGF-BB, TNF-α, TGF-β, TIMP-1, AMPK, p-mTOR, NF-κB P65 binding activity, p38 MAPKα, JNK1/2 and ERK1/2. Real-time qPCR was conducted to determine Col1a1 and α-SMA. In addition, histopathological examination using H&amp;E and Masson's trichrome stain were performed for determination of histopathological changes. Empagliflozin inhibited the activation of p38 MAPK and ERK1/2 and exhibited a weak AMPKα stimulation. On the other hand, metformin exerted a more robust stimulatory action on the AMPKα that was accompanied by a notable decrease in the NF-κB nuclear binding activity and a decline in the p-mTOR levels. Nevertheless, the effect of metformin on MAPK kinases was insignificant. Our results revealed that blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhanced the antifibrotic effect of metformin and augmented its AMPK-induced NF-κB inactivation. As diabetes is one of the most common risk factors for liver fibrosis, the use of antidiabetic drugs is expected to improve therapeutic outcome. Therefore, metformin/empagliflozin combined therapy could be promising in preventing hepatic inflammation and fibrosis via exhibiting complementary effects particularly in diabetic patients. [Display omitted] •Metformin/empagliflozin demonstrated hepatoprotective activity in vitro and in vivo.•Metformin/empagliflozin prolonged survival of mice with liver fibrosis.•Empagliflozin inhibited the activation of p38 MAPK and ERK1/2.•Metformin activated AMPKα and inhibited NF-κB nuclear binding activity.•Metformin/empagliflozin exhibited prominent anti-inflammatory effects.</description><identifier>ISSN: 0024-3205</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2021.120070</identifier><identifier>PMID: 34688695</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Adenylate Kinase - metabolism ; AMP-Activated Protein Kinases - metabolism ; AMPKα ; Animals ; Benzhydryl Compounds - metabolism ; Benzhydryl Compounds - pharmacology ; Binding ; Carbon ; Carbon tetrachloride ; Carbon Tetrachloride - pharmacology ; CCL4 protein ; Collagen (type I) ; Deactivation ; Diabetes mellitus ; Drug Therapy, Combination - methods ; ERK1/2 ; Extracellular signal-regulated kinase ; Female ; Fibrosis ; Glucosides - metabolism ; Glucosides - pharmacology ; Hepatocytes - metabolism ; Hydroxyproline ; Inactivation ; Kinases ; Liver ; Liver - metabolism ; Liver Cirrhosis - drug therapy ; Liver Cirrhosis - physiopathology ; Liver fibrosis ; Male ; MAP kinase ; MAP Kinase Signaling System - physiology ; Metformin ; Metformin - metabolism ; Metformin - pharmacology ; Metformin/empagliflozin ; Mice ; Mice, Inbred BALB C ; NF-kappa B - metabolism ; NF-κB ; NF-κB protein ; Oxidative stress ; p38 MAPK ; p38 Mitogen-Activated Protein Kinases - metabolism ; Platelet-derived growth factor ; Platelet-derived growth factor BB ; Primary Cell Culture ; Risk analysis ; Risk factors ; Signal Transduction - drug effects ; Therapy ; Tissue inhibitor of metalloproteinase 1 ; TOR protein ; Transcription Factor RelA - metabolism ; Tumor necrosis factor-α</subject><ispartof>Life sciences (1973), 2021-12, Vol.286, p.120070-120070, Article 120070</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3390-fc5dacd80b1438277e4231cf8961a581a2e034c9c4a8549373473cbb33245b833</citedby><cites>FETCH-LOGICAL-c3390-fc5dacd80b1438277e4231cf8961a581a2e034c9c4a8549373473cbb33245b833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024320521010572$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34688695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdelhamid, Amir Mohamed</creatorcontrib><creatorcontrib>Youssef, Mahmoud E.</creatorcontrib><creatorcontrib>Abd El-Fattah, Eslam E.</creatorcontrib><creatorcontrib>Gobba, Naglaa A.</creatorcontrib><creatorcontrib>Gaafar, Ahmed Gaafar Ahmed</creatorcontrib><creatorcontrib>Girgis, Samuel</creatorcontrib><creatorcontrib>Shata, Ahmed</creatorcontrib><creatorcontrib>Hafez, Abdel-Moneim</creatorcontrib><creatorcontrib>El-Ahwany, Eman</creatorcontrib><creatorcontrib>Amin, Noha A.</creatorcontrib><creatorcontrib>Shahien, Mohamed Awad</creatorcontrib><creatorcontrib>Abd-Eldayem, Marwa A.</creatorcontrib><creatorcontrib>Abou-Elrous, Magdy</creatorcontrib><creatorcontrib>Saber, Sameh</creatorcontrib><title>Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride</title><title>Life sciences (1973)</title><addtitle>Life Sci</addtitle><description>Metformin and empagliflozin combined therapy may have complementary effects that go beyond the well-recognized targets of their monotherapy through AMPK activation. Therefore, the current study was designed to investigate for the first time the hepatoprotective effects of such combination therapy in the carbon tetrachloride (CCl4)-induced hepatic fibrosis model in mice. Determination of liver enzymes and the liver content of oxidative stress parameters, and hydroxyproline were performed biochemically. ELISA was performed to measure PDGF-BB, TNF-α, TGF-β, TIMP-1, AMPK, p-mTOR, NF-κB P65 binding activity, p38 MAPKα, JNK1/2 and ERK1/2. Real-time qPCR was conducted to determine Col1a1 and α-SMA. In addition, histopathological examination using H&amp;E and Masson's trichrome stain were performed for determination of histopathological changes. Empagliflozin inhibited the activation of p38 MAPK and ERK1/2 and exhibited a weak AMPKα stimulation. On the other hand, metformin exerted a more robust stimulatory action on the AMPKα that was accompanied by a notable decrease in the NF-κB nuclear binding activity and a decline in the p-mTOR levels. Nevertheless, the effect of metformin on MAPK kinases was insignificant. Our results revealed that blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhanced the antifibrotic effect of metformin and augmented its AMPK-induced NF-κB inactivation. As diabetes is one of the most common risk factors for liver fibrosis, the use of antidiabetic drugs is expected to improve therapeutic outcome. Therefore, metformin/empagliflozin combined therapy could be promising in preventing hepatic inflammation and fibrosis via exhibiting complementary effects particularly in diabetic patients. [Display omitted] •Metformin/empagliflozin demonstrated hepatoprotective activity in vitro and in vivo.•Metformin/empagliflozin prolonged survival of mice with liver fibrosis.•Empagliflozin inhibited the activation of p38 MAPK and ERK1/2.•Metformin activated AMPKα and inhibited NF-κB nuclear binding activity.•Metformin/empagliflozin exhibited prominent anti-inflammatory effects.</description><subject>Adenylate Kinase - metabolism</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMPKα</subject><subject>Animals</subject><subject>Benzhydryl Compounds - metabolism</subject><subject>Benzhydryl Compounds - pharmacology</subject><subject>Binding</subject><subject>Carbon</subject><subject>Carbon tetrachloride</subject><subject>Carbon Tetrachloride - pharmacology</subject><subject>CCL4 protein</subject><subject>Collagen (type I)</subject><subject>Deactivation</subject><subject>Diabetes mellitus</subject><subject>Drug Therapy, Combination - methods</subject><subject>ERK1/2</subject><subject>Extracellular signal-regulated kinase</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Glucosides - metabolism</subject><subject>Glucosides - pharmacology</subject><subject>Hepatocytes - metabolism</subject><subject>Hydroxyproline</subject><subject>Inactivation</subject><subject>Kinases</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver Cirrhosis - drug therapy</subject><subject>Liver Cirrhosis - physiopathology</subject><subject>Liver fibrosis</subject><subject>Male</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>Metformin</subject><subject>Metformin - metabolism</subject><subject>Metformin - pharmacology</subject><subject>Metformin/empagliflozin</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB</subject><subject>NF-κB protein</subject><subject>Oxidative stress</subject><subject>p38 MAPK</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Platelet-derived growth factor</subject><subject>Platelet-derived growth factor BB</subject><subject>Primary Cell Culture</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Signal Transduction - drug effects</subject><subject>Therapy</subject><subject>Tissue inhibitor of metalloproteinase 1</subject><subject>TOR protein</subject><subject>Transcription Factor RelA - metabolism</subject><subject>Tumor necrosis factor-α</subject><issn>0024-3205</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQhyMEokvhAbggS1y4ZOs_ceKIU1u1gNpCheBsOc5kd1aJvbWdQnkrrjwBpz4TLls4cOBgjaz55jeWv6J4zuiSUVYfbJbjEJeccrZknNKGPigWTDVtSWvBHhYLSnlVCk7lXvEkxg2lVMpGPC72RFUrVbdyUfw8GmeX0K3IVihycXh5dvudGNeTk49n7IATYxNeY0KIpLshMG3NasRh9N_QEXBr42zupDXkmYQDdsEntASGAWwifiATpMGHKdN3oWZeTeBSJJjP4cXlWYmuny305P1pefvjiKD7vdAk9C5fyIQWck3-K1qTMvcF05pYE7rcT5CCsevRB-zhafFoMGOEZ_d1v_h8evLp-G15_uHNu-PD89IK0dJysLI3tle0Y5VQvGmg4oLZQbU1M1Ixw4GKyra2MkpWrWhE1QjbdULwSnZKiP3i1S53G_zVDDHpCaOFcTQO_Bw1l0q2rFGKZ_TlP-jGz8Hl12leU1nLthIyU2xH2eBjDDDobcDJhBvNqL7TrDc6a9Z3mvVOc555cZ88dxP0fyf-eM3A6x0A-SuuEYKOFiHL6jFkM7r3-J_4X6dSulw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Abdelhamid, Amir Mohamed</creator><creator>Youssef, Mahmoud E.</creator><creator>Abd El-Fattah, Eslam E.</creator><creator>Gobba, Naglaa A.</creator><creator>Gaafar, Ahmed Gaafar Ahmed</creator><creator>Girgis, Samuel</creator><creator>Shata, Ahmed</creator><creator>Hafez, Abdel-Moneim</creator><creator>El-Ahwany, Eman</creator><creator>Amin, Noha A.</creator><creator>Shahien, Mohamed Awad</creator><creator>Abd-Eldayem, Marwa A.</creator><creator>Abou-Elrous, Magdy</creator><creator>Saber, Sameh</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20211201</creationdate><title>Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride</title><author>Abdelhamid, Amir Mohamed ; Youssef, Mahmoud E. ; Abd El-Fattah, Eslam E. ; Gobba, Naglaa A. ; Gaafar, Ahmed Gaafar Ahmed ; Girgis, Samuel ; Shata, Ahmed ; Hafez, Abdel-Moneim ; El-Ahwany, Eman ; Amin, Noha A. ; Shahien, Mohamed Awad ; Abd-Eldayem, Marwa A. ; Abou-Elrous, Magdy ; Saber, Sameh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3390-fc5dacd80b1438277e4231cf8961a581a2e034c9c4a8549373473cbb33245b833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenylate Kinase - metabolism</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMPKα</topic><topic>Animals</topic><topic>Benzhydryl Compounds - metabolism</topic><topic>Benzhydryl Compounds - pharmacology</topic><topic>Binding</topic><topic>Carbon</topic><topic>Carbon tetrachloride</topic><topic>Carbon Tetrachloride - pharmacology</topic><topic>CCL4 protein</topic><topic>Collagen (type I)</topic><topic>Deactivation</topic><topic>Diabetes mellitus</topic><topic>Drug Therapy, Combination - methods</topic><topic>ERK1/2</topic><topic>Extracellular signal-regulated kinase</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Glucosides - metabolism</topic><topic>Glucosides - pharmacology</topic><topic>Hepatocytes - metabolism</topic><topic>Hydroxyproline</topic><topic>Inactivation</topic><topic>Kinases</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver Cirrhosis - drug therapy</topic><topic>Liver Cirrhosis - physiopathology</topic><topic>Liver fibrosis</topic><topic>Male</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>Metformin</topic><topic>Metformin - metabolism</topic><topic>Metformin - pharmacology</topic><topic>Metformin/empagliflozin</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB</topic><topic>NF-κB protein</topic><topic>Oxidative stress</topic><topic>p38 MAPK</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Platelet-derived growth factor</topic><topic>Platelet-derived growth factor BB</topic><topic>Primary Cell Culture</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Signal Transduction - drug effects</topic><topic>Therapy</topic><topic>Tissue inhibitor of metalloproteinase 1</topic><topic>TOR protein</topic><topic>Transcription Factor RelA - metabolism</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelhamid, Amir Mohamed</creatorcontrib><creatorcontrib>Youssef, Mahmoud E.</creatorcontrib><creatorcontrib>Abd El-Fattah, Eslam E.</creatorcontrib><creatorcontrib>Gobba, Naglaa A.</creatorcontrib><creatorcontrib>Gaafar, Ahmed Gaafar Ahmed</creatorcontrib><creatorcontrib>Girgis, Samuel</creatorcontrib><creatorcontrib>Shata, Ahmed</creatorcontrib><creatorcontrib>Hafez, Abdel-Moneim</creatorcontrib><creatorcontrib>El-Ahwany, Eman</creatorcontrib><creatorcontrib>Amin, Noha A.</creatorcontrib><creatorcontrib>Shahien, Mohamed Awad</creatorcontrib><creatorcontrib>Abd-Eldayem, Marwa A.</creatorcontrib><creatorcontrib>Abou-Elrous, Magdy</creatorcontrib><creatorcontrib>Saber, Sameh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelhamid, Amir Mohamed</au><au>Youssef, Mahmoud E.</au><au>Abd El-Fattah, Eslam E.</au><au>Gobba, Naglaa A.</au><au>Gaafar, Ahmed Gaafar Ahmed</au><au>Girgis, Samuel</au><au>Shata, Ahmed</au><au>Hafez, Abdel-Moneim</au><au>El-Ahwany, Eman</au><au>Amin, Noha A.</au><au>Shahien, Mohamed Awad</au><au>Abd-Eldayem, Marwa A.</au><au>Abou-Elrous, Magdy</au><au>Saber, Sameh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride</atitle><jtitle>Life sciences (1973)</jtitle><addtitle>Life Sci</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>286</volume><spage>120070</spage><epage>120070</epage><pages>120070-120070</pages><artnum>120070</artnum><issn>0024-3205</issn><eissn>1879-0631</eissn><abstract>Metformin and empagliflozin combined therapy may have complementary effects that go beyond the well-recognized targets of their monotherapy through AMPK activation. Therefore, the current study was designed to investigate for the first time the hepatoprotective effects of such combination therapy in the carbon tetrachloride (CCl4)-induced hepatic fibrosis model in mice. Determination of liver enzymes and the liver content of oxidative stress parameters, and hydroxyproline were performed biochemically. ELISA was performed to measure PDGF-BB, TNF-α, TGF-β, TIMP-1, AMPK, p-mTOR, NF-κB P65 binding activity, p38 MAPKα, JNK1/2 and ERK1/2. Real-time qPCR was conducted to determine Col1a1 and α-SMA. In addition, histopathological examination using H&amp;E and Masson's trichrome stain were performed for determination of histopathological changes. Empagliflozin inhibited the activation of p38 MAPK and ERK1/2 and exhibited a weak AMPKα stimulation. On the other hand, metformin exerted a more robust stimulatory action on the AMPKα that was accompanied by a notable decrease in the NF-κB nuclear binding activity and a decline in the p-mTOR levels. Nevertheless, the effect of metformin on MAPK kinases was insignificant. Our results revealed that blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhanced the antifibrotic effect of metformin and augmented its AMPK-induced NF-κB inactivation. As diabetes is one of the most common risk factors for liver fibrosis, the use of antidiabetic drugs is expected to improve therapeutic outcome. Therefore, metformin/empagliflozin combined therapy could be promising in preventing hepatic inflammation and fibrosis via exhibiting complementary effects particularly in diabetic patients. [Display omitted] •Metformin/empagliflozin demonstrated hepatoprotective activity in vitro and in vivo.•Metformin/empagliflozin prolonged survival of mice with liver fibrosis.•Empagliflozin inhibited the activation of p38 MAPK and ERK1/2.•Metformin activated AMPKα and inhibited NF-κB nuclear binding activity.•Metformin/empagliflozin exhibited prominent anti-inflammatory effects.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>34688695</pmid><doi>10.1016/j.lfs.2021.120070</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3205
ispartof Life sciences (1973), 2021-12, Vol.286, p.120070-120070, Article 120070
issn 0024-3205
1879-0631
language eng
recordid cdi_proquest_miscellaneous_2585917882
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adenylate Kinase - metabolism
AMP-Activated Protein Kinases - metabolism
AMPKα
Animals
Benzhydryl Compounds - metabolism
Benzhydryl Compounds - pharmacology
Binding
Carbon
Carbon tetrachloride
Carbon Tetrachloride - pharmacology
CCL4 protein
Collagen (type I)
Deactivation
Diabetes mellitus
Drug Therapy, Combination - methods
ERK1/2
Extracellular signal-regulated kinase
Female
Fibrosis
Glucosides - metabolism
Glucosides - pharmacology
Hepatocytes - metabolism
Hydroxyproline
Inactivation
Kinases
Liver
Liver - metabolism
Liver Cirrhosis - drug therapy
Liver Cirrhosis - physiopathology
Liver fibrosis
Male
MAP kinase
MAP Kinase Signaling System - physiology
Metformin
Metformin - metabolism
Metformin - pharmacology
Metformin/empagliflozin
Mice
Mice, Inbred BALB C
NF-kappa B - metabolism
NF-κB
NF-κB protein
Oxidative stress
p38 MAPK
p38 Mitogen-Activated Protein Kinases - metabolism
Platelet-derived growth factor
Platelet-derived growth factor BB
Primary Cell Culture
Risk analysis
Risk factors
Signal Transduction - drug effects
Therapy
Tissue inhibitor of metalloproteinase 1
TOR protein
Transcription Factor RelA - metabolism
Tumor necrosis factor-α
title Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blunting%20p38%20MAPK%CE%B1%20and%20ERK1/2%20activities%20by%20empagliflozin%20enhances%20the%20antifibrotic%20effect%20of%20metformin%20and%20augments%20its%20AMPK-induced%20NF-%CE%BAB%20inactivation%20in%20mice%20intoxicated%20with%20carbon%20tetrachloride&rft.jtitle=Life%20sciences%20(1973)&rft.au=Abdelhamid,%20Amir%20Mohamed&rft.date=2021-12-01&rft.volume=286&rft.spage=120070&rft.epage=120070&rft.pages=120070-120070&rft.artnum=120070&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2021.120070&rft_dat=%3Cproquest_cross%3E2605659435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605659435&rft_id=info:pmid/34688695&rft_els_id=S0024320521010572&rfr_iscdi=true