A self-stabilizing algorithm for constructing breadth-first trees

A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1992-02, Vol.41 (2), p.109-117
Hauptverfasser: Huang, Shing-Tsaan, Chen, Nian-Shing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 2
container_start_page 109
container_title Information processing letters
container_volume 41
creator Huang, Shing-Tsaan
Chen, Nian-Shing
description A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized, and give a bounded function whose value decreases for each computation step. But in some cases, it may be hard or even unlikely to find such a bounded function. However, by transforming the original set of rules into another set of rules so that both sets of rules have the equivalent effect, it may become easier to find such a bounded function from the transformed rules. The provided proof adopts this concept.
doi_str_mv 10.1016/0020-0190(92)90264-V
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25859064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002001909290264V</els_id><sourcerecordid>1137480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-c623ce84c1e1e6310ca3ab046831cd7a73ab07cd73e691eef372507a3435a4483</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMMiInpYzXd2L0IpfkHBi_Ya0nS2TdluapIV9Ne7a0sPHjxlQp55J_MgdE7wLcFE3mFMcY5Jia9LelNiKnk-PUADUiiaS0LKQzTYI8foJMYVxlhypgZoNMoi1FUek5m52n27ZpGZeuGDS8t1VvmQWd_EFFqb-qdZADNPy7xyIaYsBYB4io4qU0c4251D9P748DZ-zievTy_j0SS3XKiUW0mZhYJbAgQkI9gaZmaYy4IRO1dG9TfVVQxkSQAqpqjAyjDOhOG8YEN0tc3dBP_RQkx67aKFujYN-DZqKgpR9lsN0cUfcOXb0HR_07QLVUwI0UF8C9ngYwxQ6U1waxO-NMG6l6p7Y7o3pkuqf6Xqadd2ucs20Zq6CqaxLu57BSeUF336_RaDTsing6CjddBYmLsANum5d__P-QETE4nK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237273555</pqid></control><display><type>article</type><title>A self-stabilizing algorithm for constructing breadth-first trees</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Shing-Tsaan ; Chen, Nian-Shing</creator><creatorcontrib>Huang, Shing-Tsaan ; Chen, Nian-Shing</creatorcontrib><description>A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized, and give a bounded function whose value decreases for each computation step. But in some cases, it may be hard or even unlikely to find such a bounded function. However, by transforming the original set of rules into another set of rules so that both sets of rules have the equivalent effect, it may become easier to find such a bounded function from the transformed rules. The provided proof adopts this concept.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/0020-0190(92)90264-V</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Fault tolerance ; Fault tolerance, self-stabilizing algorithms, breadth-first trees ; Information processing ; Software ; Theory</subject><ispartof>Information processing letters, 1992-02, Vol.41 (2), p.109-117</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 14, 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-c623ce84c1e1e6310ca3ab046831cd7a73ab07cd73e691eef372507a3435a4483</citedby><cites>FETCH-LOGICAL-c457t-c623ce84c1e1e6310ca3ab046831cd7a73ab07cd73e691eef372507a3435a4483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/002001909290264V$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5412485$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Shing-Tsaan</creatorcontrib><creatorcontrib>Chen, Nian-Shing</creatorcontrib><title>A self-stabilizing algorithm for constructing breadth-first trees</title><title>Information processing letters</title><description>A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized, and give a bounded function whose value decreases for each computation step. But in some cases, it may be hard or even unlikely to find such a bounded function. However, by transforming the original set of rules into another set of rules so that both sets of rules have the equivalent effect, it may become easier to find such a bounded function from the transformed rules. The provided proof adopts this concept.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Fault tolerance, self-stabilizing algorithms, breadth-first trees</subject><subject>Information processing</subject><subject>Software</subject><subject>Theory</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMMiInpYzXd2L0IpfkHBi_Ya0nS2TdluapIV9Ne7a0sPHjxlQp55J_MgdE7wLcFE3mFMcY5Jia9LelNiKnk-PUADUiiaS0LKQzTYI8foJMYVxlhypgZoNMoi1FUek5m52n27ZpGZeuGDS8t1VvmQWd_EFFqb-qdZADNPy7xyIaYsBYB4io4qU0c4251D9P748DZ-zievTy_j0SS3XKiUW0mZhYJbAgQkI9gaZmaYy4IRO1dG9TfVVQxkSQAqpqjAyjDOhOG8YEN0tc3dBP_RQkx67aKFujYN-DZqKgpR9lsN0cUfcOXb0HR_07QLVUwI0UF8C9ngYwxQ6U1waxO-NMG6l6p7Y7o3pkuqf6Xqadd2ucs20Zq6CqaxLu57BSeUF336_RaDTsing6CjddBYmLsANum5d__P-QETE4nK</recordid><startdate>19920214</startdate><enddate>19920214</enddate><creator>Huang, Shing-Tsaan</creator><creator>Chen, Nian-Shing</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920214</creationdate><title>A self-stabilizing algorithm for constructing breadth-first trees</title><author>Huang, Shing-Tsaan ; Chen, Nian-Shing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-c623ce84c1e1e6310ca3ab046831cd7a73ab07cd73e691eef372507a3435a4483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Fault tolerance, self-stabilizing algorithms, breadth-first trees</topic><topic>Information processing</topic><topic>Software</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shing-Tsaan</creatorcontrib><creatorcontrib>Chen, Nian-Shing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shing-Tsaan</au><au>Chen, Nian-Shing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-stabilizing algorithm for constructing breadth-first trees</atitle><jtitle>Information processing letters</jtitle><date>1992-02-14</date><risdate>1992</risdate><volume>41</volume><issue>2</issue><spage>109</spage><epage>117</epage><pages>109-117</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized, and give a bounded function whose value decreases for each computation step. But in some cases, it may be hard or even unlikely to find such a bounded function. However, by transforming the original set of rules into another set of rules so that both sets of rules have the equivalent effect, it may become easier to find such a bounded function from the transformed rules. The provided proof adopts this concept.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0020-0190(92)90264-V</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 1992-02, Vol.41 (2), p.109-117
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_25859064
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Fault tolerance
Fault tolerance, self-stabilizing algorithms, breadth-first trees
Information processing
Software
Theory
title A self-stabilizing algorithm for constructing breadth-first trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-stabilizing%20algorithm%20for%20constructing%20breadth-first%20trees&rft.jtitle=Information%20processing%20letters&rft.au=Huang,%20Shing-Tsaan&rft.date=1992-02-14&rft.volume=41&rft.issue=2&rft.spage=109&rft.epage=117&rft.pages=109-117&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/0020-0190(92)90264-V&rft_dat=%3Cproquest_cross%3E1137480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237273555&rft_id=info:pmid/&rft_els_id=002001909290264V&rfr_iscdi=true