A self-stabilizing algorithm for constructing breadth-first trees
A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized,...
Gespeichert in:
Veröffentlicht in: | Information processing letters 1992-02, Vol.41 (2), p.109-117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 2 |
container_start_page | 109 |
container_title | Information processing letters |
container_volume | 41 |
creator | Huang, Shing-Tsaan Chen, Nian-Shing |
description | A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized, and give a bounded function whose value decreases for each computation step. But in some cases, it may be hard or even unlikely to find such a bounded function. However, by transforming the original set of rules into another set of rules so that both sets of rules have the equivalent effect, it may become easier to find such a bounded function from the transformed rules. The provided proof adopts this concept. |
doi_str_mv | 10.1016/0020-0190(92)90264-V |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25859064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002001909290264V</els_id><sourcerecordid>1137480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-c623ce84c1e1e6310ca3ab046831cd7a73ab07cd73e691eef372507a3435a4483</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMMiInpYzXd2L0IpfkHBi_Ya0nS2TdluapIV9Ne7a0sPHjxlQp55J_MgdE7wLcFE3mFMcY5Jia9LelNiKnk-PUADUiiaS0LKQzTYI8foJMYVxlhypgZoNMoi1FUek5m52n27ZpGZeuGDS8t1VvmQWd_EFFqb-qdZADNPy7xyIaYsBYB4io4qU0c4251D9P748DZ-zievTy_j0SS3XKiUW0mZhYJbAgQkI9gaZmaYy4IRO1dG9TfVVQxkSQAqpqjAyjDOhOG8YEN0tc3dBP_RQkx67aKFujYN-DZqKgpR9lsN0cUfcOXb0HR_07QLVUwI0UF8C9ngYwxQ6U1waxO-NMG6l6p7Y7o3pkuqf6Xqadd2ucs20Zq6CqaxLu57BSeUF336_RaDTsing6CjddBYmLsANum5d__P-QETE4nK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237273555</pqid></control><display><type>article</type><title>A self-stabilizing algorithm for constructing breadth-first trees</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Shing-Tsaan ; Chen, Nian-Shing</creator><creatorcontrib>Huang, Shing-Tsaan ; Chen, Nian-Shing</creatorcontrib><description>A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized, and give a bounded function whose value decreases for each computation step. But in some cases, it may be hard or even unlikely to find such a bounded function. However, by transforming the original set of rules into another set of rules so that both sets of rules have the equivalent effect, it may become easier to find such a bounded function from the transformed rules. The provided proof adopts this concept.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/0020-0190(92)90264-V</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Fault tolerance ; Fault tolerance, self-stabilizing algorithms, breadth-first trees ; Information processing ; Software ; Theory</subject><ispartof>Information processing letters, 1992-02, Vol.41 (2), p.109-117</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 14, 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-c623ce84c1e1e6310ca3ab046831cd7a73ab07cd73e691eef372507a3435a4483</citedby><cites>FETCH-LOGICAL-c457t-c623ce84c1e1e6310ca3ab046831cd7a73ab07cd73e691eef372507a3435a4483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/002001909290264V$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5412485$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Shing-Tsaan</creatorcontrib><creatorcontrib>Chen, Nian-Shing</creatorcontrib><title>A self-stabilizing algorithm for constructing breadth-first trees</title><title>Information processing letters</title><description>A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized, and give a bounded function whose value decreases for each computation step. But in some cases, it may be hard or even unlikely to find such a bounded function. However, by transforming the original set of rules into another set of rules so that both sets of rules have the equivalent effect, it may become easier to find such a bounded function from the transformed rules. The provided proof adopts this concept.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Fault tolerance, self-stabilizing algorithms, breadth-first trees</subject><subject>Information processing</subject><subject>Software</subject><subject>Theory</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMMiInpYzXd2L0IpfkHBi_Ya0nS2TdluapIV9Ne7a0sPHjxlQp55J_MgdE7wLcFE3mFMcY5Jia9LelNiKnk-PUADUiiaS0LKQzTYI8foJMYVxlhypgZoNMoi1FUek5m52n27ZpGZeuGDS8t1VvmQWd_EFFqb-qdZADNPy7xyIaYsBYB4io4qU0c4251D9P748DZ-zievTy_j0SS3XKiUW0mZhYJbAgQkI9gaZmaYy4IRO1dG9TfVVQxkSQAqpqjAyjDOhOG8YEN0tc3dBP_RQkx67aKFujYN-DZqKgpR9lsN0cUfcOXb0HR_07QLVUwI0UF8C9ngYwxQ6U1waxO-NMG6l6p7Y7o3pkuqf6Xqadd2ucs20Zq6CqaxLu57BSeUF336_RaDTsing6CjddBYmLsANum5d__P-QETE4nK</recordid><startdate>19920214</startdate><enddate>19920214</enddate><creator>Huang, Shing-Tsaan</creator><creator>Chen, Nian-Shing</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920214</creationdate><title>A self-stabilizing algorithm for constructing breadth-first trees</title><author>Huang, Shing-Tsaan ; Chen, Nian-Shing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-c623ce84c1e1e6310ca3ab046831cd7a73ab07cd73e691eef372507a3435a4483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Fault tolerance, self-stabilizing algorithms, breadth-first trees</topic><topic>Information processing</topic><topic>Software</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shing-Tsaan</creatorcontrib><creatorcontrib>Chen, Nian-Shing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shing-Tsaan</au><au>Chen, Nian-Shing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-stabilizing algorithm for constructing breadth-first trees</atitle><jtitle>Information processing letters</jtitle><date>1992-02-14</date><risdate>1992</risdate><volume>41</volume><issue>2</issue><spage>109</spage><epage>117</epage><pages>109-117</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>A self-stabilizing algorithm for constructing breadth-first trees is proposed. Its self-stabilizing property is proven. A convincing and straightforward way to prove a system self-stabilizing is: First prove that the system can always make a computation step as long as the system is not stabilized, and give a bounded function whose value decreases for each computation step. But in some cases, it may be hard or even unlikely to find such a bounded function. However, by transforming the original set of rules into another set of rules so that both sets of rules have the equivalent effect, it may become easier to find such a bounded function from the transformed rules. The provided proof adopts this concept.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0020-0190(92)90264-V</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 1992-02, Vol.41 (2), p.109-117 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_miscellaneous_25859064 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology Fault tolerance Fault tolerance, self-stabilizing algorithms, breadth-first trees Information processing Software Theory |
title | A self-stabilizing algorithm for constructing breadth-first trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-stabilizing%20algorithm%20for%20constructing%20breadth-first%20trees&rft.jtitle=Information%20processing%20letters&rft.au=Huang,%20Shing-Tsaan&rft.date=1992-02-14&rft.volume=41&rft.issue=2&rft.spage=109&rft.epage=117&rft.pages=109-117&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/0020-0190(92)90264-V&rft_dat=%3Cproquest_cross%3E1137480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237273555&rft_id=info:pmid/&rft_els_id=002001909290264V&rfr_iscdi=true |