External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance

External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2022-02, Vol.45 (2), p.269-277
Hauptverfasser: Yang, Jiawei, Cheng, Shaoan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue 2
container_start_page 269
container_title Bioprocess and biosystems engineering
container_volume 45
creator Yang, Jiawei
Cheng, Shaoan
description External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation between anode performance and biofilm structure. With the reduce of external resistance, the maximum current density of anode increased from 1.0 to 3.4 A/m 2 , which was resulted from a comprehensive effect of reduced charge transfer resistance and increased diffusion resistance. Biological analysis showed that with the reduce of external resistance, biomass and extracellular polymeric substances content increased by 109 and 286%, cell viability increased by 22.7%, which contributed to the reduced charge transfer resistance. But the porosity of anodic biofilm decreased by 27.8%, which led to an increased diffusion resistance of H + . This work provided a clear correlation between the electrochemical performance and biofilm structure.
doi_str_mv 10.1007/s00449-021-02658-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2585897935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624602576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-728d7e880b689316d379baa1603f3a718547984378fbb25144af70ce35a51403</originalsourceid><addsrcrecordid>eNp9kclu1jAURi1URAd4ARbIUjdsAh7iqTtUlYJUiU33luPcFFdJ_GM7HV6A567TdJBYsLA83ONj634IfaTkCyVEfc2EtK1pCKN1SKEb8wYdUElFoyQRe89rYeg-Osz5mhAqNCPv0D5vpTaM0wP09-yuQJrdiBPkkIubPWDn_RgmV0Kc6_HVMroCGXchNm6OPZzgGW7xDlLegS_hBvCQ4rTWhzBOOJe0-LKk6pl7HErGPqYE4-a7DeU3ftSshiGmaX3yPXo7uDHDh6f5CF1-P7s8_dFc_Dr_efrtovFcidIopnsFWpOu_p9T2XNlOueoJHzgTlEtWmV0y5Ueuo4J2rZuUMQDF65uCD9CnzftLsU_C-Rip5A9jKObIS7ZMqGFNspwUdHjf9DruKyNqpRkrSRMKFkptlE-xZwTDHaXaufSvaXEriHZLSRbQ7KPIVlTL316Ui_dBP3LledUKsA3INfSfAXp9e3_aB8Ab_6eVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624602576</pqid></control><display><type>article</type><title>External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Jiawei ; Cheng, Shaoan</creator><creatorcontrib>Yang, Jiawei ; Cheng, Shaoan</creatorcontrib><description>External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation between anode performance and biofilm structure. With the reduce of external resistance, the maximum current density of anode increased from 1.0 to 3.4 A/m 2 , which was resulted from a comprehensive effect of reduced charge transfer resistance and increased diffusion resistance. Biological analysis showed that with the reduce of external resistance, biomass and extracellular polymeric substances content increased by 109 and 286%, cell viability increased by 22.7%, which contributed to the reduced charge transfer resistance. But the porosity of anodic biofilm decreased by 27.8%, which led to an increased diffusion resistance of H + . This work provided a clear correlation between the electrochemical performance and biofilm structure.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-021-02658-9</identifier><identifier>PMID: 34689231</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimation ; Acclimatization ; Anode effect ; Bioelectric Energy Sources ; Biofilms ; Biological analysis ; Biomass ; Biotechnology ; Cell viability ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Correlation ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Environmental Engineering/Biotechnology ; Extracellular polymers ; Food Science ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Porosity ; Research Paper</subject><ispartof>Bioprocess and biosystems engineering, 2022-02, Vol.45 (2), p.269-277</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-728d7e880b689316d379baa1603f3a718547984378fbb25144af70ce35a51403</citedby><cites>FETCH-LOGICAL-c375t-728d7e880b689316d379baa1603f3a718547984378fbb25144af70ce35a51403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-021-02658-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-021-02658-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34689231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jiawei</creatorcontrib><creatorcontrib>Cheng, Shaoan</creatorcontrib><title>External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation between anode performance and biofilm structure. With the reduce of external resistance, the maximum current density of anode increased from 1.0 to 3.4 A/m 2 , which was resulted from a comprehensive effect of reduced charge transfer resistance and increased diffusion resistance. Biological analysis showed that with the reduce of external resistance, biomass and extracellular polymeric substances content increased by 109 and 286%, cell viability increased by 22.7%, which contributed to the reduced charge transfer resistance. But the porosity of anodic biofilm decreased by 27.8%, which led to an increased diffusion resistance of H + . This work provided a clear correlation between the electrochemical performance and biofilm structure.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Anode effect</subject><subject>Bioelectric Energy Sources</subject><subject>Biofilms</subject><subject>Biological analysis</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Cell viability</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Correlation</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Extracellular polymers</subject><subject>Food Science</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Porosity</subject><subject>Research Paper</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kclu1jAURi1URAd4ARbIUjdsAh7iqTtUlYJUiU33luPcFFdJ_GM7HV6A567TdJBYsLA83ONj634IfaTkCyVEfc2EtK1pCKN1SKEb8wYdUElFoyQRe89rYeg-Osz5mhAqNCPv0D5vpTaM0wP09-yuQJrdiBPkkIubPWDn_RgmV0Kc6_HVMroCGXchNm6OPZzgGW7xDlLegS_hBvCQ4rTWhzBOOJe0-LKk6pl7HErGPqYE4-a7DeU3ftSshiGmaX3yPXo7uDHDh6f5CF1-P7s8_dFc_Dr_efrtovFcidIopnsFWpOu_p9T2XNlOueoJHzgTlEtWmV0y5Ueuo4J2rZuUMQDF65uCD9CnzftLsU_C-Rip5A9jKObIS7ZMqGFNspwUdHjf9DruKyNqpRkrSRMKFkptlE-xZwTDHaXaufSvaXEriHZLSRbQ7KPIVlTL316Ui_dBP3LledUKsA3INfSfAXp9e3_aB8Ab_6eVA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Yang, Jiawei</creator><creator>Cheng, Shaoan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20220201</creationdate><title>External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance</title><author>Yang, Jiawei ; Cheng, Shaoan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-728d7e880b689316d379baa1603f3a718547984378fbb25144af70ce35a51403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Anode effect</topic><topic>Bioelectric Energy Sources</topic><topic>Biofilms</topic><topic>Biological analysis</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Cell viability</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Correlation</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Extracellular polymers</topic><topic>Food Science</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Porosity</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jiawei</creatorcontrib><creatorcontrib>Cheng, Shaoan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jiawei</au><au>Cheng, Shaoan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>45</volume><issue>2</issue><spage>269</spage><epage>277</epage><pages>269-277</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation between anode performance and biofilm structure. With the reduce of external resistance, the maximum current density of anode increased from 1.0 to 3.4 A/m 2 , which was resulted from a comprehensive effect of reduced charge transfer resistance and increased diffusion resistance. Biological analysis showed that with the reduce of external resistance, biomass and extracellular polymeric substances content increased by 109 and 286%, cell viability increased by 22.7%, which contributed to the reduced charge transfer resistance. But the porosity of anodic biofilm decreased by 27.8%, which led to an increased diffusion resistance of H + . This work provided a clear correlation between the electrochemical performance and biofilm structure.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34689231</pmid><doi>10.1007/s00449-021-02658-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-7591
ispartof Bioprocess and biosystems engineering, 2022-02, Vol.45 (2), p.269-277
issn 1615-7591
1615-7605
language eng
recordid cdi_proquest_miscellaneous_2585897935
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acclimation
Acclimatization
Anode effect
Bioelectric Energy Sources
Biofilms
Biological analysis
Biomass
Biotechnology
Cell viability
Charge transfer
Chemistry
Chemistry and Materials Science
Correlation
Electrochemical analysis
Electrochemistry
Electrodes
Environmental Engineering/Biotechnology
Extracellular polymers
Food Science
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Porosity
Research Paper
title External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=External%20resistance%20acclimation%20regulates%20bio-anode:%20new%20perspective%20from%20biofilm%20structure%20and%20its%20correlation%20with%20anode%20performance&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Yang,%20Jiawei&rft.date=2022-02-01&rft.volume=45&rft.issue=2&rft.spage=269&rft.epage=277&rft.pages=269-277&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-021-02658-9&rft_dat=%3Cproquest_cross%3E2624602576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624602576&rft_id=info:pmid/34689231&rfr_iscdi=true