Somatic variant analysis suite: copy number variation clonal visualization online platform for large-scale single-cell genomics

Abstract The recent advance of single-cell copy number variation (CNV) analysis plays an essential role in addressing intratumor heterogeneity, identifying tumor subgroups and restoring tumor-evolving trajectories at single-cell scale. Informative visualization of copy number analysis results boosts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2022-01, Vol.23 (1)
Hauptverfasser: Chen, Lingxi, Qing, Yuhao, Li, Ruikang, Li, Chaohui, Li, Hechen, Feng, Xikang, Li, Shuai Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Briefings in bioinformatics
container_volume 23
creator Chen, Lingxi
Qing, Yuhao
Li, Ruikang
Li, Chaohui
Li, Hechen
Feng, Xikang
Li, Shuai Cheng
description Abstract The recent advance of single-cell copy number variation (CNV) analysis plays an essential role in addressing intratumor heterogeneity, identifying tumor subgroups and restoring tumor-evolving trajectories at single-cell scale. Informative visualization of copy number analysis results boosts productive scientific exploration, validation and sharing. Several single-cell analysis figures have the effectiveness of visualizations for understanding single-cell genomics in published articles and software packages. However, they almost lack real-time interaction, and it is hard to reproduce them. Moreover, existing tools are time-consuming and memory-intensive when they reach large-scale single-cell throughputs. We present an online visualization platform, single-cell Somatic Variant Analysis Suite (scSVAS), for real-time interactive single-cell genomics data visualization. scSVAS is specifically designed for large-scale single-cell genomic analysis that provides an arsenal of unique functionalities. After uploading the specified input files, scSVAS deploys the online interactive visualization automatically. Users may conduct scientific discoveries, share interactive visualizations and download high-quality publication-ready figures. scSVAS provides versatile utilities for managing, investigating, sharing and publishing single-cell CNV profiles. We envision this online platform will expedite the biological understanding of cancer clonal evolution in single-cell resolution. All visualizations are publicly hosted at https://sc.deepomics.org.
doi_str_mv 10.1093/bib/bbab452
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2585461282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbab452</oup_id><sourcerecordid>2585461282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-67d422694d868fcd9f35da321c84e777411075bd827da159e6f69a59c181cb463</originalsourceid><addsrcrecordid>eNp90U1LBCEYB3CJovdT9xCCCGJadZzR6RbRGwQdqvOgjrO4ODrpzMJ26avnMluHDiGo6I8Hff4AnGB0hVGVz6SRMymFpAXZAvuYMpZRVNDt9b5kWUHLfA8cxLhAiCDG8S7Yy9MF5ojtg69X34nBKLgUwQg3QOGEXUUTYRzNoK-h8v0KurGTOkxmMN5BZX1ycGniKKz5nA69s8Zp2FsxtD50ME3QijDXWVTCahiNm1udKW0tnGvnO6PiEdhphY36eLMegvf7u7fbx-z55eHp9uY5UznlQ1ayhhJSVrThJW9VU7V50YicYMWpZoxRjBErZMMJawQuKl22ZSWKSmGOlUwdOAQXU90--I9Rx6HuTFy_RDjtx1iTgqdGYcJJomd_6MKPIX03qTINhBBnSV1OSgUfY9Bt3QfTibCqMarXudQpl3qTS9Knm5qj7HTza3-CSOB8An7s_630DewPmA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626200087</pqid></control><display><type>article</type><title>Somatic variant analysis suite: copy number variation clonal visualization online platform for large-scale single-cell genomics</title><source>Oxford Journals Open Access Collection</source><creator>Chen, Lingxi ; Qing, Yuhao ; Li, Ruikang ; Li, Chaohui ; Li, Hechen ; Feng, Xikang ; Li, Shuai Cheng</creator><creatorcontrib>Chen, Lingxi ; Qing, Yuhao ; Li, Ruikang ; Li, Chaohui ; Li, Hechen ; Feng, Xikang ; Li, Shuai Cheng</creatorcontrib><description>Abstract The recent advance of single-cell copy number variation (CNV) analysis plays an essential role in addressing intratumor heterogeneity, identifying tumor subgroups and restoring tumor-evolving trajectories at single-cell scale. Informative visualization of copy number analysis results boosts productive scientific exploration, validation and sharing. Several single-cell analysis figures have the effectiveness of visualizations for understanding single-cell genomics in published articles and software packages. However, they almost lack real-time interaction, and it is hard to reproduce them. Moreover, existing tools are time-consuming and memory-intensive when they reach large-scale single-cell throughputs. We present an online visualization platform, single-cell Somatic Variant Analysis Suite (scSVAS), for real-time interactive single-cell genomics data visualization. scSVAS is specifically designed for large-scale single-cell genomic analysis that provides an arsenal of unique functionalities. After uploading the specified input files, scSVAS deploys the online interactive visualization automatically. Users may conduct scientific discoveries, share interactive visualizations and download high-quality publication-ready figures. scSVAS provides versatile utilities for managing, investigating, sharing and publishing single-cell CNV profiles. We envision this online platform will expedite the biological understanding of cancer clonal evolution in single-cell resolution. All visualizations are publicly hosted at https://sc.deepomics.org.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbab452</identifier><identifier>PMID: 34671807</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Copy number ; Data Visualization ; DNA Copy Number Variations ; Genome ; Genomic analysis ; Genomics ; Genomics - methods ; Heterogeneity ; Real time ; Scientific visualization ; Software ; Subgroups ; Tumors ; Visualization</subject><ispartof>Briefings in bioinformatics, 2022-01, Vol.23 (1)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-67d422694d868fcd9f35da321c84e777411075bd827da159e6f69a59c181cb463</citedby><cites>FETCH-LOGICAL-c348t-67d422694d868fcd9f35da321c84e777411075bd827da159e6f69a59c181cb463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbab452$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34671807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lingxi</creatorcontrib><creatorcontrib>Qing, Yuhao</creatorcontrib><creatorcontrib>Li, Ruikang</creatorcontrib><creatorcontrib>Li, Chaohui</creatorcontrib><creatorcontrib>Li, Hechen</creatorcontrib><creatorcontrib>Feng, Xikang</creatorcontrib><creatorcontrib>Li, Shuai Cheng</creatorcontrib><title>Somatic variant analysis suite: copy number variation clonal visualization online platform for large-scale single-cell genomics</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract The recent advance of single-cell copy number variation (CNV) analysis plays an essential role in addressing intratumor heterogeneity, identifying tumor subgroups and restoring tumor-evolving trajectories at single-cell scale. Informative visualization of copy number analysis results boosts productive scientific exploration, validation and sharing. Several single-cell analysis figures have the effectiveness of visualizations for understanding single-cell genomics in published articles and software packages. However, they almost lack real-time interaction, and it is hard to reproduce them. Moreover, existing tools are time-consuming and memory-intensive when they reach large-scale single-cell throughputs. We present an online visualization platform, single-cell Somatic Variant Analysis Suite (scSVAS), for real-time interactive single-cell genomics data visualization. scSVAS is specifically designed for large-scale single-cell genomic analysis that provides an arsenal of unique functionalities. After uploading the specified input files, scSVAS deploys the online interactive visualization automatically. Users may conduct scientific discoveries, share interactive visualizations and download high-quality publication-ready figures. scSVAS provides versatile utilities for managing, investigating, sharing and publishing single-cell CNV profiles. We envision this online platform will expedite the biological understanding of cancer clonal evolution in single-cell resolution. All visualizations are publicly hosted at https://sc.deepomics.org.</description><subject>Copy number</subject><subject>Data Visualization</subject><subject>DNA Copy Number Variations</subject><subject>Genome</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Heterogeneity</subject><subject>Real time</subject><subject>Scientific visualization</subject><subject>Software</subject><subject>Subgroups</subject><subject>Tumors</subject><subject>Visualization</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1LBCEYB3CJovdT9xCCCGJadZzR6RbRGwQdqvOgjrO4ODrpzMJ26avnMluHDiGo6I8Hff4AnGB0hVGVz6SRMymFpAXZAvuYMpZRVNDt9b5kWUHLfA8cxLhAiCDG8S7Yy9MF5ojtg69X34nBKLgUwQg3QOGEXUUTYRzNoK-h8v0KurGTOkxmMN5BZX1ycGniKKz5nA69s8Zp2FsxtD50ME3QijDXWVTCahiNm1udKW0tnGvnO6PiEdhphY36eLMegvf7u7fbx-z55eHp9uY5UznlQ1ayhhJSVrThJW9VU7V50YicYMWpZoxRjBErZMMJawQuKl22ZSWKSmGOlUwdOAQXU90--I9Rx6HuTFy_RDjtx1iTgqdGYcJJomd_6MKPIX03qTINhBBnSV1OSgUfY9Bt3QfTibCqMarXudQpl3qTS9Knm5qj7HTza3-CSOB8An7s_630DewPmA0</recordid><startdate>20220117</startdate><enddate>20220117</enddate><creator>Chen, Lingxi</creator><creator>Qing, Yuhao</creator><creator>Li, Ruikang</creator><creator>Li, Chaohui</creator><creator>Li, Hechen</creator><creator>Feng, Xikang</creator><creator>Li, Shuai Cheng</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20220117</creationdate><title>Somatic variant analysis suite: copy number variation clonal visualization online platform for large-scale single-cell genomics</title><author>Chen, Lingxi ; Qing, Yuhao ; Li, Ruikang ; Li, Chaohui ; Li, Hechen ; Feng, Xikang ; Li, Shuai Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-67d422694d868fcd9f35da321c84e777411075bd827da159e6f69a59c181cb463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Copy number</topic><topic>Data Visualization</topic><topic>DNA Copy Number Variations</topic><topic>Genome</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Heterogeneity</topic><topic>Real time</topic><topic>Scientific visualization</topic><topic>Software</topic><topic>Subgroups</topic><topic>Tumors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lingxi</creatorcontrib><creatorcontrib>Qing, Yuhao</creatorcontrib><creatorcontrib>Li, Ruikang</creatorcontrib><creatorcontrib>Li, Chaohui</creatorcontrib><creatorcontrib>Li, Hechen</creatorcontrib><creatorcontrib>Feng, Xikang</creatorcontrib><creatorcontrib>Li, Shuai Cheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Lingxi</au><au>Qing, Yuhao</au><au>Li, Ruikang</au><au>Li, Chaohui</au><au>Li, Hechen</au><au>Feng, Xikang</au><au>Li, Shuai Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Somatic variant analysis suite: copy number variation clonal visualization online platform for large-scale single-cell genomics</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2022-01-17</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract The recent advance of single-cell copy number variation (CNV) analysis plays an essential role in addressing intratumor heterogeneity, identifying tumor subgroups and restoring tumor-evolving trajectories at single-cell scale. Informative visualization of copy number analysis results boosts productive scientific exploration, validation and sharing. Several single-cell analysis figures have the effectiveness of visualizations for understanding single-cell genomics in published articles and software packages. However, they almost lack real-time interaction, and it is hard to reproduce them. Moreover, existing tools are time-consuming and memory-intensive when they reach large-scale single-cell throughputs. We present an online visualization platform, single-cell Somatic Variant Analysis Suite (scSVAS), for real-time interactive single-cell genomics data visualization. scSVAS is specifically designed for large-scale single-cell genomic analysis that provides an arsenal of unique functionalities. After uploading the specified input files, scSVAS deploys the online interactive visualization automatically. Users may conduct scientific discoveries, share interactive visualizations and download high-quality publication-ready figures. scSVAS provides versatile utilities for managing, investigating, sharing and publishing single-cell CNV profiles. We envision this online platform will expedite the biological understanding of cancer clonal evolution in single-cell resolution. All visualizations are publicly hosted at https://sc.deepomics.org.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34671807</pmid><doi>10.1093/bib/bbab452</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2022-01, Vol.23 (1)
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2585461282
source Oxford Journals Open Access Collection
subjects Copy number
Data Visualization
DNA Copy Number Variations
Genome
Genomic analysis
Genomics
Genomics - methods
Heterogeneity
Real time
Scientific visualization
Software
Subgroups
Tumors
Visualization
title Somatic variant analysis suite: copy number variation clonal visualization online platform for large-scale single-cell genomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Somatic%20variant%20analysis%20suite:%20copy%20number%20variation%20clonal%20visualization%20online%20platform%20for%20large-scale%20single-cell%20genomics&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Chen,%20Lingxi&rft.date=2022-01-17&rft.volume=23&rft.issue=1&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbab452&rft_dat=%3Cproquest_TOX%3E2585461282%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626200087&rft_id=info:pmid/34671807&rft_oup_id=10.1093/bib/bbab452&rfr_iscdi=true