Hybrid catalyst cascade for enhanced oxidation of glucose in glucose/air biofuel cell

Hybrid enzymatic and organic catalyst cascade system for enhanced glucose oxidation is proposed and utilized to fabricate glucose/air enzymatic biofuel cells. The presence of bifunctional TEMPO improves the energetic efficiency, thus boosting the cell performance. [Display omitted] •A hybrid enzymat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2022-02, Vol.143, p.107983, Article 107983
Hauptverfasser: Li, Gangyong, Wu, Zongdong, Xu, Cuixing, Hu, Zongqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107983
container_title Bioelectrochemistry (Amsterdam, Netherlands)
container_volume 143
creator Li, Gangyong
Wu, Zongdong
Xu, Cuixing
Hu, Zongqian
description Hybrid enzymatic and organic catalyst cascade system for enhanced glucose oxidation is proposed and utilized to fabricate glucose/air enzymatic biofuel cells. The presence of bifunctional TEMPO improves the energetic efficiency, thus boosting the cell performance. [Display omitted] •A hybrid enzymatic and organic catalyst cascade for glucose oxidation is proposed.•The organic catalyst catalyzes 4e- oxidation of glucose into glucuronic acid.•The organic catalyst is capable of mediating electron transfer between enzymes and electrode.•Feasibility of using the hybrid catalyst cascade in glucose/air biofuel cell is demonstrated. Redox enzymes are capable of harvesting electrical energy from biofuels in high catalytic activity and under mild condition. However, it is difficult to achieve efficient electron transfer and deep oxidation of biofuels simultaneously in a single-enzyme catalytic system. Herein, we report a hybrid catalyst cascade consisting of an organic oxidation catalyst, 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO), and an enzyme, glucose oxidase (GOx), for electrochemical oxidation of glucose. It is found that TEMPO is capable of mediating electron transfer between the redox center of GOx and the electrode surface. While glucose can be oxidized into glucuronic acid under neutral conditions. Thus, combining GOx and TEMPO, we are able to achieve 4e- electrooxidation of glucose using the hybrid enzymatic and organic cascade (HEOC) system. When coupled with an air-breathing Pt cathode, the resulting glucose/air biofuel cell using the proposed HEOC anode exhibits a maximum power density of 38.1 μW cm−2 with a short-circuit current of 651.4 μA cm−2, which can be attributed to the enhanced energetic efficiency, enabling TEMPO a promising catalyst for glucose oxidation in bioelectronics applications.
doi_str_mv 10.1016/j.bioelechem.2021.107983
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2585359800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539421002462</els_id><sourcerecordid>2585359800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d2ed4e8a4d38a12b69fc534a85984f8ac43d21ec9aa29cfdde1671ae0f20b77d3</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMofv8FCbhx05kkTdN0qYNfILhRcBfS5EUzdJoxacX592YYR8GNq1zCee9dDkKYkgklVEznk9YH6MC8wWLCCKP5u25kuYMOqaxlUQn2sptzJeqiKht-gI5SmhNCJK2rfXRQciElbcQher5btdFbbPSgu1UackhGW8AuRAz9m-4NWBw-vdWDDz0ODr92owkJsO-3cap9xLmRG6HDBrruBO053SU4_X6P0fPN9dPsrnh4vL2fXT4UhhM2FJaB5SA1t6XUlLWicaYquZZVI7mT2vDSMgqm0Zo1xlkLVNRUA3GMtHVty2N0sdm7jOF9hDSohU_rArqHMCbFKlmVeRkhGT3_g87DGPvcTjHBBGGN4CxTckOZGFKK4NQy-oWOK0WJWqtXc_WrXq3Vq436PHr2fWBsF2B_BreuM3C1ASAb-fAQVTIe1n59BDMoG_z_V74AyfyaYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626029642</pqid></control><display><type>article</type><title>Hybrid catalyst cascade for enhanced oxidation of glucose in glucose/air biofuel cell</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Gangyong ; Wu, Zongdong ; Xu, Cuixing ; Hu, Zongqian</creator><creatorcontrib>Li, Gangyong ; Wu, Zongdong ; Xu, Cuixing ; Hu, Zongqian</creatorcontrib><description>Hybrid enzymatic and organic catalyst cascade system for enhanced glucose oxidation is proposed and utilized to fabricate glucose/air enzymatic biofuel cells. The presence of bifunctional TEMPO improves the energetic efficiency, thus boosting the cell performance. [Display omitted] •A hybrid enzymatic and organic catalyst cascade for glucose oxidation is proposed.•The organic catalyst catalyzes 4e- oxidation of glucose into glucuronic acid.•The organic catalyst is capable of mediating electron transfer between enzymes and electrode.•Feasibility of using the hybrid catalyst cascade in glucose/air biofuel cell is demonstrated. Redox enzymes are capable of harvesting electrical energy from biofuels in high catalytic activity and under mild condition. However, it is difficult to achieve efficient electron transfer and deep oxidation of biofuels simultaneously in a single-enzyme catalytic system. Herein, we report a hybrid catalyst cascade consisting of an organic oxidation catalyst, 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO), and an enzyme, glucose oxidase (GOx), for electrochemical oxidation of glucose. It is found that TEMPO is capable of mediating electron transfer between the redox center of GOx and the electrode surface. While glucose can be oxidized into glucuronic acid under neutral conditions. Thus, combining GOx and TEMPO, we are able to achieve 4e- electrooxidation of glucose using the hybrid enzymatic and organic cascade (HEOC) system. When coupled with an air-breathing Pt cathode, the resulting glucose/air biofuel cell using the proposed HEOC anode exhibits a maximum power density of 38.1 μW cm−2 with a short-circuit current of 651.4 μA cm−2, which can be attributed to the enhanced energetic efficiency, enabling TEMPO a promising catalyst for glucose oxidation in bioelectronics applications.</description><identifier>ISSN: 1567-5394</identifier><identifier>ISSN: 1878-562X</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2021.107983</identifier><identifier>PMID: 34688196</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Air ; Biochemical fuel cells ; Biodiesel fuels ; Bioelectric Energy Sources ; Biofuels ; Cascade catalysis ; Catalysis ; Catalysts ; Catalytic activity ; Circuits ; Cyclic N-Oxides - chemistry ; Electrochemical oxidation ; Electrochemistry ; Electrodes ; Electron transfer ; Energy harvesting ; Enzymatic biofuel cell ; Enzymes ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; Glucose ; Glucose - chemistry ; Glucose - metabolism ; Glucose oxidase ; Glucose Oxidase - chemistry ; Glucose Oxidase - metabolism ; Maximum power density ; Organic catalyst ; Oxidation ; Oxidation-Reduction ; Piperidine ; Short circuit currents ; Short-circuit current</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2022-02, Vol.143, p.107983, Article 107983</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d2ed4e8a4d38a12b69fc534a85984f8ac43d21ec9aa29cfdde1671ae0f20b77d3</citedby><cites>FETCH-LOGICAL-c402t-d2ed4e8a4d38a12b69fc534a85984f8ac43d21ec9aa29cfdde1671ae0f20b77d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bioelechem.2021.107983$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34688196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Gangyong</creatorcontrib><creatorcontrib>Wu, Zongdong</creatorcontrib><creatorcontrib>Xu, Cuixing</creatorcontrib><creatorcontrib>Hu, Zongqian</creatorcontrib><title>Hybrid catalyst cascade for enhanced oxidation of glucose in glucose/air biofuel cell</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>Hybrid enzymatic and organic catalyst cascade system for enhanced glucose oxidation is proposed and utilized to fabricate glucose/air enzymatic biofuel cells. The presence of bifunctional TEMPO improves the energetic efficiency, thus boosting the cell performance. [Display omitted] •A hybrid enzymatic and organic catalyst cascade for glucose oxidation is proposed.•The organic catalyst catalyzes 4e- oxidation of glucose into glucuronic acid.•The organic catalyst is capable of mediating electron transfer between enzymes and electrode.•Feasibility of using the hybrid catalyst cascade in glucose/air biofuel cell is demonstrated. Redox enzymes are capable of harvesting electrical energy from biofuels in high catalytic activity and under mild condition. However, it is difficult to achieve efficient electron transfer and deep oxidation of biofuels simultaneously in a single-enzyme catalytic system. Herein, we report a hybrid catalyst cascade consisting of an organic oxidation catalyst, 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO), and an enzyme, glucose oxidase (GOx), for electrochemical oxidation of glucose. It is found that TEMPO is capable of mediating electron transfer between the redox center of GOx and the electrode surface. While glucose can be oxidized into glucuronic acid under neutral conditions. Thus, combining GOx and TEMPO, we are able to achieve 4e- electrooxidation of glucose using the hybrid enzymatic and organic cascade (HEOC) system. When coupled with an air-breathing Pt cathode, the resulting glucose/air biofuel cell using the proposed HEOC anode exhibits a maximum power density of 38.1 μW cm−2 with a short-circuit current of 651.4 μA cm−2, which can be attributed to the enhanced energetic efficiency, enabling TEMPO a promising catalyst for glucose oxidation in bioelectronics applications.</description><subject>Air</subject><subject>Biochemical fuel cells</subject><subject>Biodiesel fuels</subject><subject>Bioelectric Energy Sources</subject><subject>Biofuels</subject><subject>Cascade catalysis</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Circuits</subject><subject>Cyclic N-Oxides - chemistry</subject><subject>Electrochemical oxidation</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Energy harvesting</subject><subject>Enzymatic biofuel cell</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Glucose</subject><subject>Glucose - chemistry</subject><subject>Glucose - metabolism</subject><subject>Glucose oxidase</subject><subject>Glucose Oxidase - chemistry</subject><subject>Glucose Oxidase - metabolism</subject><subject>Maximum power density</subject><subject>Organic catalyst</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Piperidine</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><issn>1567-5394</issn><issn>1878-562X</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAURYMofv8FCbhx05kkTdN0qYNfILhRcBfS5EUzdJoxacX592YYR8GNq1zCee9dDkKYkgklVEznk9YH6MC8wWLCCKP5u25kuYMOqaxlUQn2sptzJeqiKht-gI5SmhNCJK2rfXRQciElbcQher5btdFbbPSgu1UackhGW8AuRAz9m-4NWBw-vdWDDz0ODr92owkJsO-3cap9xLmRG6HDBrruBO053SU4_X6P0fPN9dPsrnh4vL2fXT4UhhM2FJaB5SA1t6XUlLWicaYquZZVI7mT2vDSMgqm0Zo1xlkLVNRUA3GMtHVty2N0sdm7jOF9hDSohU_rArqHMCbFKlmVeRkhGT3_g87DGPvcTjHBBGGN4CxTckOZGFKK4NQy-oWOK0WJWqtXc_WrXq3Vq436PHr2fWBsF2B_BreuM3C1ASAb-fAQVTIe1n59BDMoG_z_V74AyfyaYg</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Li, Gangyong</creator><creator>Wu, Zongdong</creator><creator>Xu, Cuixing</creator><creator>Hu, Zongqian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202202</creationdate><title>Hybrid catalyst cascade for enhanced oxidation of glucose in glucose/air biofuel cell</title><author>Li, Gangyong ; Wu, Zongdong ; Xu, Cuixing ; Hu, Zongqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d2ed4e8a4d38a12b69fc534a85984f8ac43d21ec9aa29cfdde1671ae0f20b77d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air</topic><topic>Biochemical fuel cells</topic><topic>Biodiesel fuels</topic><topic>Bioelectric Energy Sources</topic><topic>Biofuels</topic><topic>Cascade catalysis</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Circuits</topic><topic>Cyclic N-Oxides - chemistry</topic><topic>Electrochemical oxidation</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Energy harvesting</topic><topic>Enzymatic biofuel cell</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Glucose</topic><topic>Glucose - chemistry</topic><topic>Glucose - metabolism</topic><topic>Glucose oxidase</topic><topic>Glucose Oxidase - chemistry</topic><topic>Glucose Oxidase - metabolism</topic><topic>Maximum power density</topic><topic>Organic catalyst</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Piperidine</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gangyong</creatorcontrib><creatorcontrib>Wu, Zongdong</creatorcontrib><creatorcontrib>Xu, Cuixing</creatorcontrib><creatorcontrib>Hu, Zongqian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gangyong</au><au>Wu, Zongdong</au><au>Xu, Cuixing</au><au>Hu, Zongqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid catalyst cascade for enhanced oxidation of glucose in glucose/air biofuel cell</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2022-02</date><risdate>2022</risdate><volume>143</volume><spage>107983</spage><pages>107983-</pages><artnum>107983</artnum><issn>1567-5394</issn><issn>1878-562X</issn><eissn>1878-562X</eissn><abstract>Hybrid enzymatic and organic catalyst cascade system for enhanced glucose oxidation is proposed and utilized to fabricate glucose/air enzymatic biofuel cells. The presence of bifunctional TEMPO improves the energetic efficiency, thus boosting the cell performance. [Display omitted] •A hybrid enzymatic and organic catalyst cascade for glucose oxidation is proposed.•The organic catalyst catalyzes 4e- oxidation of glucose into glucuronic acid.•The organic catalyst is capable of mediating electron transfer between enzymes and electrode.•Feasibility of using the hybrid catalyst cascade in glucose/air biofuel cell is demonstrated. Redox enzymes are capable of harvesting electrical energy from biofuels in high catalytic activity and under mild condition. However, it is difficult to achieve efficient electron transfer and deep oxidation of biofuels simultaneously in a single-enzyme catalytic system. Herein, we report a hybrid catalyst cascade consisting of an organic oxidation catalyst, 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO), and an enzyme, glucose oxidase (GOx), for electrochemical oxidation of glucose. It is found that TEMPO is capable of mediating electron transfer between the redox center of GOx and the electrode surface. While glucose can be oxidized into glucuronic acid under neutral conditions. Thus, combining GOx and TEMPO, we are able to achieve 4e- electrooxidation of glucose using the hybrid enzymatic and organic cascade (HEOC) system. When coupled with an air-breathing Pt cathode, the resulting glucose/air biofuel cell using the proposed HEOC anode exhibits a maximum power density of 38.1 μW cm−2 with a short-circuit current of 651.4 μA cm−2, which can be attributed to the enhanced energetic efficiency, enabling TEMPO a promising catalyst for glucose oxidation in bioelectronics applications.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>34688196</pmid><doi>10.1016/j.bioelechem.2021.107983</doi></addata></record>
fulltext fulltext
identifier ISSN: 1567-5394
ispartof Bioelectrochemistry (Amsterdam, Netherlands), 2022-02, Vol.143, p.107983, Article 107983
issn 1567-5394
1878-562X
1878-562X
language eng
recordid cdi_proquest_miscellaneous_2585359800
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Air
Biochemical fuel cells
Biodiesel fuels
Bioelectric Energy Sources
Biofuels
Cascade catalysis
Catalysis
Catalysts
Catalytic activity
Circuits
Cyclic N-Oxides - chemistry
Electrochemical oxidation
Electrochemistry
Electrodes
Electron transfer
Energy harvesting
Enzymatic biofuel cell
Enzymes
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - metabolism
Glucose
Glucose - chemistry
Glucose - metabolism
Glucose oxidase
Glucose Oxidase - chemistry
Glucose Oxidase - metabolism
Maximum power density
Organic catalyst
Oxidation
Oxidation-Reduction
Piperidine
Short circuit currents
Short-circuit current
title Hybrid catalyst cascade for enhanced oxidation of glucose in glucose/air biofuel cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20catalyst%20cascade%20for%20enhanced%20oxidation%20of%20glucose%20in%20glucose/air%20biofuel%20cell&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Li,%20Gangyong&rft.date=2022-02&rft.volume=143&rft.spage=107983&rft.pages=107983-&rft.artnum=107983&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2021.107983&rft_dat=%3Cproquest_cross%3E2585359800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626029642&rft_id=info:pmid/34688196&rft_els_id=S1567539421002462&rfr_iscdi=true