A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine
In recent decades, an increasing number of tissue engineered bone grafts have been developed. However, expensive and laborious screenings in vivo are necessary to assess the safety and efficacy of their formulations. Rodents are the first choice for initial in vivo screens but their size limits the...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2021-12, Vol.279, p.121187-121187, Article 121187 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121187 |
---|---|
container_issue | |
container_start_page | 121187 |
container_title | Biomaterials |
container_volume | 279 |
creator | Andrés Sastre, E. Nossin, Y. Jansen, I. Kops, N. Intini, C. Witte-Bouma, J. van Rietbergen, B. Hofmann, S. Ridwan, Y. Gleeson, J.P. O'Brien, F.J. Wolvius, E.B. van Osch, G.J.V.M. Farrell, E. |
description | In recent decades, an increasing number of tissue engineered bone grafts have been developed. However, expensive and laborious screenings in vivo are necessary to assess the safety and efficacy of their formulations. Rodents are the first choice for initial in vivo screens but their size limits the dimensions and number of the bone grafts that can be tested in orthotopic locations. Here, we report the development of a refined murine subcutaneous model for semi-orthotopic bone formation that allows the testing of up to four grafts per mouse one order of magnitude greater in volume than currently possible in mice. Crucially, these defects are also “critical size” and unable to heal within the timeframe of the study without intervention. The model is based on four bovine bone implants, ring-shaped, where the bone healing potential of distinct grafts can be evaluated in vivo. In this study we demonstrate that promotion and prevention of ossification can be assessed in our model. For this, we used a semi-automatic algorithm for longitudinal micro-CT image registration followed by histological analyses. Taken together, our data supports that this model is suitable as a platform for the real-time screening of bone formation, and provides the possibility to study bone resorption, osseointegration and vascularisation.
[Display omitted] |
doi_str_mv | 10.1016/j.biomaterials.2021.121187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584802067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961221005445</els_id><sourcerecordid>2584802067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-7ed107791c9159d8139045e46d0729f85066b5790229e652df804ceab8e55c83</originalsourceid><addsrcrecordid>eNqNkE1PAyEQhonRaP34C4Z48rIVKLDgramfSRMv3skuzCpNFypsa_z30lRNj15mMsk7877zIHRFyZgSKm8W49bHvhkg-WaZx4wwOqaMUlUfoFGpqhKaiEM0IpSzSkvKTtBpzgtSZsLZMTqZcFkrydUINVMc4BNn6H0V0_Aeh7jyFrcxAHbQgR1wHx0scRcTtrBc4iY4vOePB8iDD2_YB5zgDQKkZvAbwD04b32Ac3TUlZhw8dPP0OvD_evsqZq_PD7PpvPK8gkbqhocJXWtqdVUaKfoRBMugEtHaqY7JYiUrag1YUyDFMx1inALTatACKsmZ-h6d3aV4se6ZDK9z9vATYC4zoYJxRVhRNZFeruT2hRzTtCZVfJ9k74MJWZL2CzMPmGzJWx2hMvy5Y_Pui0v_q3-Ii2Cu50AyrMbD8lk6yHYgiMVnMZF_x-fb_Tuk14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584802067</pqid></control><display><type>article</type><title>A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine</title><source>MEDLINE</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Andrés Sastre, E. ; Nossin, Y. ; Jansen, I. ; Kops, N. ; Intini, C. ; Witte-Bouma, J. ; van Rietbergen, B. ; Hofmann, S. ; Ridwan, Y. ; Gleeson, J.P. ; O'Brien, F.J. ; Wolvius, E.B. ; van Osch, G.J.V.M. ; Farrell, E.</creator><creatorcontrib>Andrés Sastre, E. ; Nossin, Y. ; Jansen, I. ; Kops, N. ; Intini, C. ; Witte-Bouma, J. ; van Rietbergen, B. ; Hofmann, S. ; Ridwan, Y. ; Gleeson, J.P. ; O'Brien, F.J. ; Wolvius, E.B. ; van Osch, G.J.V.M. ; Farrell, E.</creatorcontrib><description>In recent decades, an increasing number of tissue engineered bone grafts have been developed. However, expensive and laborious screenings in vivo are necessary to assess the safety and efficacy of their formulations. Rodents are the first choice for initial in vivo screens but their size limits the dimensions and number of the bone grafts that can be tested in orthotopic locations. Here, we report the development of a refined murine subcutaneous model for semi-orthotopic bone formation that allows the testing of up to four grafts per mouse one order of magnitude greater in volume than currently possible in mice. Crucially, these defects are also “critical size” and unable to heal within the timeframe of the study without intervention. The model is based on four bovine bone implants, ring-shaped, where the bone healing potential of distinct grafts can be evaluated in vivo. In this study we demonstrate that promotion and prevention of ossification can be assessed in our model. For this, we used a semi-automatic algorithm for longitudinal micro-CT image registration followed by histological analyses. Taken together, our data supports that this model is suitable as a platform for the real-time screening of bone formation, and provides the possibility to study bone resorption, osseointegration and vascularisation.
[Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2021.121187</identifier><identifier>PMID: 34678648</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animal model ; Animals ; Biocompatible Materials ; Bone ; Bone Regeneration ; Bone substitutes ; Cattle ; Endochondral ossification ; Guided tissue regeneration ; Mice ; Osteogenesis ; Regenerative Medicine ; Tissue Engineering ; Tissue Scaffolds</subject><ispartof>Biomaterials, 2021-12, Vol.279, p.121187-121187, Article 121187</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-7ed107791c9159d8139045e46d0729f85066b5790229e652df804ceab8e55c83</citedby><cites>FETCH-LOGICAL-c432t-7ed107791c9159d8139045e46d0729f85066b5790229e652df804ceab8e55c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2021.121187$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34678648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrés Sastre, E.</creatorcontrib><creatorcontrib>Nossin, Y.</creatorcontrib><creatorcontrib>Jansen, I.</creatorcontrib><creatorcontrib>Kops, N.</creatorcontrib><creatorcontrib>Intini, C.</creatorcontrib><creatorcontrib>Witte-Bouma, J.</creatorcontrib><creatorcontrib>van Rietbergen, B.</creatorcontrib><creatorcontrib>Hofmann, S.</creatorcontrib><creatorcontrib>Ridwan, Y.</creatorcontrib><creatorcontrib>Gleeson, J.P.</creatorcontrib><creatorcontrib>O'Brien, F.J.</creatorcontrib><creatorcontrib>Wolvius, E.B.</creatorcontrib><creatorcontrib>van Osch, G.J.V.M.</creatorcontrib><creatorcontrib>Farrell, E.</creatorcontrib><title>A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>In recent decades, an increasing number of tissue engineered bone grafts have been developed. However, expensive and laborious screenings in vivo are necessary to assess the safety and efficacy of their formulations. Rodents are the first choice for initial in vivo screens but their size limits the dimensions and number of the bone grafts that can be tested in orthotopic locations. Here, we report the development of a refined murine subcutaneous model for semi-orthotopic bone formation that allows the testing of up to four grafts per mouse one order of magnitude greater in volume than currently possible in mice. Crucially, these defects are also “critical size” and unable to heal within the timeframe of the study without intervention. The model is based on four bovine bone implants, ring-shaped, where the bone healing potential of distinct grafts can be evaluated in vivo. In this study we demonstrate that promotion and prevention of ossification can be assessed in our model. For this, we used a semi-automatic algorithm for longitudinal micro-CT image registration followed by histological analyses. Taken together, our data supports that this model is suitable as a platform for the real-time screening of bone formation, and provides the possibility to study bone resorption, osseointegration and vascularisation.
[Display omitted]</description><subject>Animal model</subject><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Bone</subject><subject>Bone Regeneration</subject><subject>Bone substitutes</subject><subject>Cattle</subject><subject>Endochondral ossification</subject><subject>Guided tissue regeneration</subject><subject>Mice</subject><subject>Osteogenesis</subject><subject>Regenerative Medicine</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1PAyEQhonRaP34C4Z48rIVKLDgramfSRMv3skuzCpNFypsa_z30lRNj15mMsk7877zIHRFyZgSKm8W49bHvhkg-WaZx4wwOqaMUlUfoFGpqhKaiEM0IpSzSkvKTtBpzgtSZsLZMTqZcFkrydUINVMc4BNn6H0V0_Aeh7jyFrcxAHbQgR1wHx0scRcTtrBc4iY4vOePB8iDD2_YB5zgDQKkZvAbwD04b32Ac3TUlZhw8dPP0OvD_evsqZq_PD7PpvPK8gkbqhocJXWtqdVUaKfoRBMugEtHaqY7JYiUrag1YUyDFMx1inALTatACKsmZ-h6d3aV4se6ZDK9z9vATYC4zoYJxRVhRNZFeruT2hRzTtCZVfJ9k74MJWZL2CzMPmGzJWx2hMvy5Y_Pui0v_q3-Ii2Cu50AyrMbD8lk6yHYgiMVnMZF_x-fb_Tuk14</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Andrés Sastre, E.</creator><creator>Nossin, Y.</creator><creator>Jansen, I.</creator><creator>Kops, N.</creator><creator>Intini, C.</creator><creator>Witte-Bouma, J.</creator><creator>van Rietbergen, B.</creator><creator>Hofmann, S.</creator><creator>Ridwan, Y.</creator><creator>Gleeson, J.P.</creator><creator>O'Brien, F.J.</creator><creator>Wolvius, E.B.</creator><creator>van Osch, G.J.V.M.</creator><creator>Farrell, E.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202112</creationdate><title>A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine</title><author>Andrés Sastre, E. ; Nossin, Y. ; Jansen, I. ; Kops, N. ; Intini, C. ; Witte-Bouma, J. ; van Rietbergen, B. ; Hofmann, S. ; Ridwan, Y. ; Gleeson, J.P. ; O'Brien, F.J. ; Wolvius, E.B. ; van Osch, G.J.V.M. ; Farrell, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-7ed107791c9159d8139045e46d0729f85066b5790229e652df804ceab8e55c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal model</topic><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Bone</topic><topic>Bone Regeneration</topic><topic>Bone substitutes</topic><topic>Cattle</topic><topic>Endochondral ossification</topic><topic>Guided tissue regeneration</topic><topic>Mice</topic><topic>Osteogenesis</topic><topic>Regenerative Medicine</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrés Sastre, E.</creatorcontrib><creatorcontrib>Nossin, Y.</creatorcontrib><creatorcontrib>Jansen, I.</creatorcontrib><creatorcontrib>Kops, N.</creatorcontrib><creatorcontrib>Intini, C.</creatorcontrib><creatorcontrib>Witte-Bouma, J.</creatorcontrib><creatorcontrib>van Rietbergen, B.</creatorcontrib><creatorcontrib>Hofmann, S.</creatorcontrib><creatorcontrib>Ridwan, Y.</creatorcontrib><creatorcontrib>Gleeson, J.P.</creatorcontrib><creatorcontrib>O'Brien, F.J.</creatorcontrib><creatorcontrib>Wolvius, E.B.</creatorcontrib><creatorcontrib>van Osch, G.J.V.M.</creatorcontrib><creatorcontrib>Farrell, E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrés Sastre, E.</au><au>Nossin, Y.</au><au>Jansen, I.</au><au>Kops, N.</au><au>Intini, C.</au><au>Witte-Bouma, J.</au><au>van Rietbergen, B.</au><au>Hofmann, S.</au><au>Ridwan, Y.</au><au>Gleeson, J.P.</au><au>O'Brien, F.J.</au><au>Wolvius, E.B.</au><au>van Osch, G.J.V.M.</au><au>Farrell, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2021-12</date><risdate>2021</risdate><volume>279</volume><spage>121187</spage><epage>121187</epage><pages>121187-121187</pages><artnum>121187</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>In recent decades, an increasing number of tissue engineered bone grafts have been developed. However, expensive and laborious screenings in vivo are necessary to assess the safety and efficacy of their formulations. Rodents are the first choice for initial in vivo screens but their size limits the dimensions and number of the bone grafts that can be tested in orthotopic locations. Here, we report the development of a refined murine subcutaneous model for semi-orthotopic bone formation that allows the testing of up to four grafts per mouse one order of magnitude greater in volume than currently possible in mice. Crucially, these defects are also “critical size” and unable to heal within the timeframe of the study without intervention. The model is based on four bovine bone implants, ring-shaped, where the bone healing potential of distinct grafts can be evaluated in vivo. In this study we demonstrate that promotion and prevention of ossification can be assessed in our model. For this, we used a semi-automatic algorithm for longitudinal micro-CT image registration followed by histological analyses. Taken together, our data supports that this model is suitable as a platform for the real-time screening of bone formation, and provides the possibility to study bone resorption, osseointegration and vascularisation.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34678648</pmid><doi>10.1016/j.biomaterials.2021.121187</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2021-12, Vol.279, p.121187-121187, Article 121187 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_2584802067 |
source | MEDLINE; ScienceDirect Freedom Collection (Elsevier) |
subjects | Animal model Animals Biocompatible Materials Bone Bone Regeneration Bone substitutes Cattle Endochondral ossification Guided tissue regeneration Mice Osteogenesis Regenerative Medicine Tissue Engineering Tissue Scaffolds |
title | A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20semi-orthotopic%20bone%20defect%20model%20for%20cell%20and%20biomaterial%20testing%20in%20regenerative%20medicine&rft.jtitle=Biomaterials&rft.au=Andr%C3%A9s%20Sastre,%20E.&rft.date=2021-12&rft.volume=279&rft.spage=121187&rft.epage=121187&rft.pages=121187-121187&rft.artnum=121187&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2021.121187&rft_dat=%3Cproquest_cross%3E2584802067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584802067&rft_id=info:pmid/34678648&rft_els_id=S0142961221005445&rfr_iscdi=true |