Axial and Nonaxial Migration of Red Blood Cells in a Microtube

Human red blood cells (RBCs) are subjected to high viscous shear stress, especially during microcirculation, resulting in stable deformed shapes such as parachute or slipper shape. Those unique deformed RBC shapes, accompanied with axial or nonaxial migration, cannot be fully described according to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2021-09, Vol.12 (10), p.1162, Article 1162
Hauptverfasser: Takeishi, Naoki, Yamashita, Hiroshi, Omori, Toshihiro, Yokoyama, Naoto, Sugihara-Seki, Masako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1162
container_title Micromachines (Basel)
container_volume 12
creator Takeishi, Naoki
Yamashita, Hiroshi
Omori, Toshihiro
Yokoyama, Naoto
Sugihara-Seki, Masako
description Human red blood cells (RBCs) are subjected to high viscous shear stress, especially during microcirculation, resulting in stable deformed shapes such as parachute or slipper shape. Those unique deformed RBC shapes, accompanied with axial or nonaxial migration, cannot be fully described according to traditional knowledge about lateral movement of deformable spherical particles. Although several experimental and numerical studies have investigated RBC behavior in microchannels with similar diameters as RBCs, the detailed mechanical characteristics of RBC lateral movement-in particular, regarding the relationship between stable deformed shapes, equilibrium radial RBC position, and membrane load-has not yet been fully described. Thus, we numerically investigated the behavior of single RBCs with radii of 4 mu m in a circular microchannel with diameters of 15 mu m. Flow was assumed to be almost inertialess. The problem was characterized by the capillary number, which is the ratio between fluid viscous force and membrane elastic force. The power (or energy dissipation) associated with membrane deformations was introduced to quantify the state of membrane loads. Simulations were performed with different capillary numbers, viscosity ratios of the internal to external fluids of RBCs, and initial RBC centroid positions. Our numerical results demonstrated that axial or nonaxial migration of RBC depended on the stable deformed RBC shapes, and the equilibrium radial position of the RBC centroid correlated well with energy expenditure associated with membrane deformations.
doi_str_mv 10.3390/mi12101162
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584784044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b0a224513934b659a6a7165d74edb4d</doaj_id><sourcerecordid>2584784044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-9a28f970f0b82687f14ded0e85c274cf6ca06495ccae686dd19a3f34d586fad83</originalsourceid><addsrcrecordid>eNqNkVlrFEEUhRtRTIh58Rc0-CLKaO3LSyBpXAJRQRR8K27XMtbQUxWrul3-vTUzIRqfrIdav3u4dU7XPcboBaUavdxGTDDCWJB73TFBkqyEEF_u_7U_6k5r3aA2pNRtetgdUSYUJZgdd2fnPyNMPSTXv88J9od3cV1gjjn1OfQfvesvppxdP_hpqn1MPTTCljwvo3_UPQgwVX96s550n1-_-jS8XV19eHM5nF-tLOd6XmkgKmiJAhoVEUoGzJx3yCtuiWQ2CAtIMM2tBS-UcA5roIEyx5UI4BQ96S4Pui7DxlyXuIXyy2SIZn-Ry9pAmaOdvKEjAkIYx1RTNgquQYDEgjvJvBuZa1pnB63rZdx6Z32aC0x3RO--pPjVrPN3ozjDQuEm8PRGoORvi6-z2cZqmzuQfF6qIVwxqRhirKFP_kE3eSmpWbWnGKdc7X737EA1V2stPtw2g5HZpWz-pNzg5wf4hx9zqDb6ZP1twS5lLBHhehf4rlf1__QQ533uQ17STH8DrZq2tQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584453588</pqid></control><display><type>article</type><title>Axial and Nonaxial Migration of Red Blood Cells in a Microtube</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Takeishi, Naoki ; Yamashita, Hiroshi ; Omori, Toshihiro ; Yokoyama, Naoto ; Sugihara-Seki, Masako</creator><creatorcontrib>Takeishi, Naoki ; Yamashita, Hiroshi ; Omori, Toshihiro ; Yokoyama, Naoto ; Sugihara-Seki, Masako</creatorcontrib><description>Human red blood cells (RBCs) are subjected to high viscous shear stress, especially during microcirculation, resulting in stable deformed shapes such as parachute or slipper shape. Those unique deformed RBC shapes, accompanied with axial or nonaxial migration, cannot be fully described according to traditional knowledge about lateral movement of deformable spherical particles. Although several experimental and numerical studies have investigated RBC behavior in microchannels with similar diameters as RBCs, the detailed mechanical characteristics of RBC lateral movement-in particular, regarding the relationship between stable deformed shapes, equilibrium radial RBC position, and membrane load-has not yet been fully described. Thus, we numerically investigated the behavior of single RBCs with radii of 4 mu m in a circular microchannel with diameters of 15 mu m. Flow was assumed to be almost inertialess. The problem was characterized by the capillary number, which is the ratio between fluid viscous force and membrane elastic force. The power (or energy dissipation) associated with membrane deformations was introduced to quantify the state of membrane loads. Simulations were performed with different capillary numbers, viscosity ratios of the internal to external fluids of RBCs, and initial RBC centroid positions. Our numerical results demonstrated that axial or nonaxial migration of RBC depended on the stable deformed RBC shapes, and the equilibrium radial position of the RBC centroid correlated well with energy expenditure associated with membrane deformations.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi12101162</identifier><identifier>PMID: 34683214</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>axial migration ; Blood ; Blood diseases ; Blood vessels ; Centroids ; Chemistry ; Chemistry, Analytical ; computational biomechanics ; Deformation ; Elastic deformation ; Energy dissipation ; Equilibrium ; Erythrocytes ; finite element method ; Formability ; Hemoglobin ; immersed boundary method ; Instruments &amp; Instrumentation ; Investigations ; lattice-Boltzmann method ; Mechanical properties ; Membranes ; Microchannels ; Nanoscience &amp; Nanotechnology ; Numerical analysis ; Physical Sciences ; Physics ; Physics, Applied ; Physiology ; Plasma ; red blood cells ; Reynolds number ; Rheology ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Shear stress ; Technology ; Viscosity ; Viscosity ratio</subject><ispartof>Micromachines (Basel), 2021-09, Vol.12 (10), p.1162, Article 1162</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000717025900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c559t-9a28f970f0b82687f14ded0e85c274cf6ca06495ccae686dd19a3f34d586fad83</citedby><cites>FETCH-LOGICAL-c559t-9a28f970f0b82687f14ded0e85c274cf6ca06495ccae686dd19a3f34d586fad83</cites><orcidid>0000-0002-4953-8675 ; 0000-0003-1460-1002 ; 0000-0003-0226-5400 ; 0000-0002-9877-5298 ; 0000-0002-9568-8711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541681/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541681/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Takeishi, Naoki</creatorcontrib><creatorcontrib>Yamashita, Hiroshi</creatorcontrib><creatorcontrib>Omori, Toshihiro</creatorcontrib><creatorcontrib>Yokoyama, Naoto</creatorcontrib><creatorcontrib>Sugihara-Seki, Masako</creatorcontrib><title>Axial and Nonaxial Migration of Red Blood Cells in a Microtube</title><title>Micromachines (Basel)</title><addtitle>MICROMACHINES-BASEL</addtitle><description>Human red blood cells (RBCs) are subjected to high viscous shear stress, especially during microcirculation, resulting in stable deformed shapes such as parachute or slipper shape. Those unique deformed RBC shapes, accompanied with axial or nonaxial migration, cannot be fully described according to traditional knowledge about lateral movement of deformable spherical particles. Although several experimental and numerical studies have investigated RBC behavior in microchannels with similar diameters as RBCs, the detailed mechanical characteristics of RBC lateral movement-in particular, regarding the relationship between stable deformed shapes, equilibrium radial RBC position, and membrane load-has not yet been fully described. Thus, we numerically investigated the behavior of single RBCs with radii of 4 mu m in a circular microchannel with diameters of 15 mu m. Flow was assumed to be almost inertialess. The problem was characterized by the capillary number, which is the ratio between fluid viscous force and membrane elastic force. The power (or energy dissipation) associated with membrane deformations was introduced to quantify the state of membrane loads. Simulations were performed with different capillary numbers, viscosity ratios of the internal to external fluids of RBCs, and initial RBC centroid positions. Our numerical results demonstrated that axial or nonaxial migration of RBC depended on the stable deformed RBC shapes, and the equilibrium radial position of the RBC centroid correlated well with energy expenditure associated with membrane deformations.</description><subject>axial migration</subject><subject>Blood</subject><subject>Blood diseases</subject><subject>Blood vessels</subject><subject>Centroids</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>computational biomechanics</subject><subject>Deformation</subject><subject>Elastic deformation</subject><subject>Energy dissipation</subject><subject>Equilibrium</subject><subject>Erythrocytes</subject><subject>finite element method</subject><subject>Formability</subject><subject>Hemoglobin</subject><subject>immersed boundary method</subject><subject>Instruments &amp; Instrumentation</subject><subject>Investigations</subject><subject>lattice-Boltzmann method</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Microchannels</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Numerical analysis</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physiology</subject><subject>Plasma</subject><subject>red blood cells</subject><subject>Reynolds number</subject><subject>Rheology</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Shear stress</subject><subject>Technology</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkVlrFEEUhRtRTIh58Rc0-CLKaO3LSyBpXAJRQRR8K27XMtbQUxWrul3-vTUzIRqfrIdav3u4dU7XPcboBaUavdxGTDDCWJB73TFBkqyEEF_u_7U_6k5r3aA2pNRtetgdUSYUJZgdd2fnPyNMPSTXv88J9od3cV1gjjn1OfQfvesvppxdP_hpqn1MPTTCljwvo3_UPQgwVX96s550n1-_-jS8XV19eHM5nF-tLOd6XmkgKmiJAhoVEUoGzJx3yCtuiWQ2CAtIMM2tBS-UcA5roIEyx5UI4BQ96S4Pui7DxlyXuIXyy2SIZn-Ry9pAmaOdvKEjAkIYx1RTNgquQYDEgjvJvBuZa1pnB63rZdx6Z32aC0x3RO--pPjVrPN3ozjDQuEm8PRGoORvi6-z2cZqmzuQfF6qIVwxqRhirKFP_kE3eSmpWbWnGKdc7X737EA1V2stPtw2g5HZpWz-pNzg5wf4hx9zqDb6ZP1twS5lLBHhehf4rlf1__QQ533uQ17STH8DrZq2tQ</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Takeishi, Naoki</creator><creator>Yamashita, Hiroshi</creator><creator>Omori, Toshihiro</creator><creator>Yokoyama, Naoto</creator><creator>Sugihara-Seki, Masako</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4953-8675</orcidid><orcidid>https://orcid.org/0000-0003-1460-1002</orcidid><orcidid>https://orcid.org/0000-0003-0226-5400</orcidid><orcidid>https://orcid.org/0000-0002-9877-5298</orcidid><orcidid>https://orcid.org/0000-0002-9568-8711</orcidid></search><sort><creationdate>20210928</creationdate><title>Axial and Nonaxial Migration of Red Blood Cells in a Microtube</title><author>Takeishi, Naoki ; Yamashita, Hiroshi ; Omori, Toshihiro ; Yokoyama, Naoto ; Sugihara-Seki, Masako</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-9a28f970f0b82687f14ded0e85c274cf6ca06495ccae686dd19a3f34d586fad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>axial migration</topic><topic>Blood</topic><topic>Blood diseases</topic><topic>Blood vessels</topic><topic>Centroids</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>computational biomechanics</topic><topic>Deformation</topic><topic>Elastic deformation</topic><topic>Energy dissipation</topic><topic>Equilibrium</topic><topic>Erythrocytes</topic><topic>finite element method</topic><topic>Formability</topic><topic>Hemoglobin</topic><topic>immersed boundary method</topic><topic>Instruments &amp; Instrumentation</topic><topic>Investigations</topic><topic>lattice-Boltzmann method</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Microchannels</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Numerical analysis</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physiology</topic><topic>Plasma</topic><topic>red blood cells</topic><topic>Reynolds number</topic><topic>Rheology</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Shear stress</topic><topic>Technology</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeishi, Naoki</creatorcontrib><creatorcontrib>Yamashita, Hiroshi</creatorcontrib><creatorcontrib>Omori, Toshihiro</creatorcontrib><creatorcontrib>Yokoyama, Naoto</creatorcontrib><creatorcontrib>Sugihara-Seki, Masako</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeishi, Naoki</au><au>Yamashita, Hiroshi</au><au>Omori, Toshihiro</au><au>Yokoyama, Naoto</au><au>Sugihara-Seki, Masako</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axial and Nonaxial Migration of Red Blood Cells in a Microtube</atitle><jtitle>Micromachines (Basel)</jtitle><stitle>MICROMACHINES-BASEL</stitle><date>2021-09-28</date><risdate>2021</risdate><volume>12</volume><issue>10</issue><spage>1162</spage><pages>1162-</pages><artnum>1162</artnum><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Human red blood cells (RBCs) are subjected to high viscous shear stress, especially during microcirculation, resulting in stable deformed shapes such as parachute or slipper shape. Those unique deformed RBC shapes, accompanied with axial or nonaxial migration, cannot be fully described according to traditional knowledge about lateral movement of deformable spherical particles. Although several experimental and numerical studies have investigated RBC behavior in microchannels with similar diameters as RBCs, the detailed mechanical characteristics of RBC lateral movement-in particular, regarding the relationship between stable deformed shapes, equilibrium radial RBC position, and membrane load-has not yet been fully described. Thus, we numerically investigated the behavior of single RBCs with radii of 4 mu m in a circular microchannel with diameters of 15 mu m. Flow was assumed to be almost inertialess. The problem was characterized by the capillary number, which is the ratio between fluid viscous force and membrane elastic force. The power (or energy dissipation) associated with membrane deformations was introduced to quantify the state of membrane loads. Simulations were performed with different capillary numbers, viscosity ratios of the internal to external fluids of RBCs, and initial RBC centroid positions. Our numerical results demonstrated that axial or nonaxial migration of RBC depended on the stable deformed RBC shapes, and the equilibrium radial position of the RBC centroid correlated well with energy expenditure associated with membrane deformations.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34683214</pmid><doi>10.3390/mi12101162</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4953-8675</orcidid><orcidid>https://orcid.org/0000-0003-1460-1002</orcidid><orcidid>https://orcid.org/0000-0003-0226-5400</orcidid><orcidid>https://orcid.org/0000-0002-9877-5298</orcidid><orcidid>https://orcid.org/0000-0002-9568-8711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2021-09, Vol.12 (10), p.1162, Article 1162
issn 2072-666X
2072-666X
language eng
recordid cdi_proquest_miscellaneous_2584784044
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects axial migration
Blood
Blood diseases
Blood vessels
Centroids
Chemistry
Chemistry, Analytical
computational biomechanics
Deformation
Elastic deformation
Energy dissipation
Equilibrium
Erythrocytes
finite element method
Formability
Hemoglobin
immersed boundary method
Instruments & Instrumentation
Investigations
lattice-Boltzmann method
Mechanical properties
Membranes
Microchannels
Nanoscience & Nanotechnology
Numerical analysis
Physical Sciences
Physics
Physics, Applied
Physiology
Plasma
red blood cells
Reynolds number
Rheology
Science & Technology
Science & Technology - Other Topics
Shear stress
Technology
Viscosity
Viscosity ratio
title Axial and Nonaxial Migration of Red Blood Cells in a Microtube
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axial%20and%20Nonaxial%20Migration%20of%20Red%20Blood%20Cells%20in%20a%20Microtube&rft.jtitle=Micromachines%20(Basel)&rft.au=Takeishi,%20Naoki&rft.date=2021-09-28&rft.volume=12&rft.issue=10&rft.spage=1162&rft.pages=1162-&rft.artnum=1162&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi12101162&rft_dat=%3Cproquest_cross%3E2584784044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584453588&rft_id=info:pmid/34683214&rft_doaj_id=oai_doaj_org_article_3b0a224513934b659a6a7165d74edb4d&rfr_iscdi=true