Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field

Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-11, Vol.13 (43), p.50657-50667
Hauptverfasser: Jonáš, Alexandr, Pilát, Zdeněk, Ježek, Jan, Bernatová, Silvie, Jedlička, Petr, Aas, Mehdi, Kiraz, Alper, Zemánek, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50667
container_issue 43
container_start_page 50657
container_title ACS applied materials & interfaces
container_volume 13
creator Jonáš, Alexandr
Pilát, Zdeněk
Ježek, Jan
Bernatová, Silvie
Jedlička, Petr
Aas, Mehdi
Kiraz, Alper
Zemánek, Pavel
description Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems.
doi_str_mv 10.1021/acsami.1c11936
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584439432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584439432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-69ccf6b7b9956eddb51964a14f622cfac6f7ced6a23b10c89d1c04b7a19db6563</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKtb11mKMDXJZDLNUkp9QKWbug55DU1JZ6ZJRpl_b2SKO1f3cu45F84HwD1GC4wIfpI6yqNbYI0xL9kFmGFOabEkFbn82ym9BjcxHhBiJUHVDOy3fXJaej_CXZBt7LuQpPIWZr1r_OCM0_DD6dB5GW2I8NulPdy4U77AVRhjkh6u5JdLzka4G1proBph2lu49lankOMvznpzC64a6aO9O885-HxZ71ZvxWb7-r563hSyRHUqGNe6YapWnFfMGqMqzBmVmDaMEN1IzZpaW8MkKRVGeskN1oiqWmJuFKtYOQcP098-dKfBxiSOLmrrvWxtN0RBqiWlJaclydbFZM3tYgy2EX1wRxlGgZH4RSompOKMNAcep0DWxaEbQpub_Gf-AVToewo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584439432</pqid></control><display><type>article</type><title>Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field</title><source>ACS Publications</source><creator>Jonáš, Alexandr ; Pilát, Zdeněk ; Ježek, Jan ; Bernatová, Silvie ; Jedlička, Petr ; Aas, Mehdi ; Kiraz, Alper ; Zemánek, Pavel</creator><creatorcontrib>Jonáš, Alexandr ; Pilát, Zdeněk ; Ježek, Jan ; Bernatová, Silvie ; Jedlička, Petr ; Aas, Mehdi ; Kiraz, Alper ; Zemánek, Pavel</creatorcontrib><description>Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c11936</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces</subject><ispartof>ACS applied materials &amp; interfaces, 2021-11, Vol.13 (43), p.50657-50667</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-69ccf6b7b9956eddb51964a14f622cfac6f7ced6a23b10c89d1c04b7a19db6563</citedby><cites>FETCH-LOGICAL-a307t-69ccf6b7b9956eddb51964a14f622cfac6f7ced6a23b10c89d1c04b7a19db6563</cites><orcidid>0000-0001-9259-8393 ; 0000-0002-3555-6901 ; 0000-0001-7977-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c11936$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c11936$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Jonáš, Alexandr</creatorcontrib><creatorcontrib>Pilát, Zdeněk</creatorcontrib><creatorcontrib>Ježek, Jan</creatorcontrib><creatorcontrib>Bernatová, Silvie</creatorcontrib><creatorcontrib>Jedlička, Petr</creatorcontrib><creatorcontrib>Aas, Mehdi</creatorcontrib><creatorcontrib>Kiraz, Alper</creatorcontrib><creatorcontrib>Zemánek, Pavel</creatorcontrib><title>Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKtb11mKMDXJZDLNUkp9QKWbug55DU1JZ6ZJRpl_b2SKO1f3cu45F84HwD1GC4wIfpI6yqNbYI0xL9kFmGFOabEkFbn82ym9BjcxHhBiJUHVDOy3fXJaej_CXZBt7LuQpPIWZr1r_OCM0_DD6dB5GW2I8NulPdy4U77AVRhjkh6u5JdLzka4G1proBph2lu49lankOMvznpzC64a6aO9O885-HxZ71ZvxWb7-r563hSyRHUqGNe6YapWnFfMGqMqzBmVmDaMEN1IzZpaW8MkKRVGeskN1oiqWmJuFKtYOQcP098-dKfBxiSOLmrrvWxtN0RBqiWlJaclydbFZM3tYgy2EX1wRxlGgZH4RSompOKMNAcep0DWxaEbQpub_Gf-AVToewo</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Jonáš, Alexandr</creator><creator>Pilát, Zdeněk</creator><creator>Ježek, Jan</creator><creator>Bernatová, Silvie</creator><creator>Jedlička, Petr</creator><creator>Aas, Mehdi</creator><creator>Kiraz, Alper</creator><creator>Zemánek, Pavel</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9259-8393</orcidid><orcidid>https://orcid.org/0000-0002-3555-6901</orcidid><orcidid>https://orcid.org/0000-0001-7977-1286</orcidid></search><sort><creationdate>20211103</creationdate><title>Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field</title><author>Jonáš, Alexandr ; Pilát, Zdeněk ; Ježek, Jan ; Bernatová, Silvie ; Jedlička, Petr ; Aas, Mehdi ; Kiraz, Alper ; Zemánek, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-69ccf6b7b9956eddb51964a14f622cfac6f7ced6a23b10c89d1c04b7a19db6563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonáš, Alexandr</creatorcontrib><creatorcontrib>Pilát, Zdeněk</creatorcontrib><creatorcontrib>Ježek, Jan</creatorcontrib><creatorcontrib>Bernatová, Silvie</creatorcontrib><creatorcontrib>Jedlička, Petr</creatorcontrib><creatorcontrib>Aas, Mehdi</creatorcontrib><creatorcontrib>Kiraz, Alper</creatorcontrib><creatorcontrib>Zemánek, Pavel</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonáš, Alexandr</au><au>Pilát, Zdeněk</au><au>Ježek, Jan</au><au>Bernatová, Silvie</au><au>Jedlička, Petr</au><au>Aas, Mehdi</au><au>Kiraz, Alper</au><au>Zemánek, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-11-03</date><risdate>2021</risdate><volume>13</volume><issue>43</issue><spage>50657</spage><epage>50667</epage><pages>50657-50667</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c11936</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9259-8393</orcidid><orcidid>https://orcid.org/0000-0002-3555-6901</orcidid><orcidid>https://orcid.org/0000-0001-7977-1286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-11, Vol.13 (43), p.50657-50667
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2584439432
source ACS Publications
subjects Biological and Medical Applications of Materials and Interfaces
title Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Transportable%20Optofluidic%20Microlasers%20with%20Liquid%20Crystal%20Cavities%20Tuned%20by%20the%20Electric%20Field&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jona%CC%81s%CC%8C,%20Alexandr&rft.date=2021-11-03&rft.volume=13&rft.issue=43&rft.spage=50657&rft.epage=50667&rft.pages=50657-50667&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c11936&rft_dat=%3Cproquest_cross%3E2584439432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584439432&rft_id=info:pmid/&rfr_iscdi=true