Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field
Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile int...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-11, Vol.13 (43), p.50657-50667 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50667 |
---|---|
container_issue | 43 |
container_start_page | 50657 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Jonáš, Alexandr Pilát, Zdeněk Ježek, Jan Bernatová, Silvie Jedlička, Petr Aas, Mehdi Kiraz, Alper Zemánek, Pavel |
description | Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems. |
doi_str_mv | 10.1021/acsami.1c11936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584439432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584439432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-69ccf6b7b9956eddb51964a14f622cfac6f7ced6a23b10c89d1c04b7a19db6563</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKtb11mKMDXJZDLNUkp9QKWbug55DU1JZ6ZJRpl_b2SKO1f3cu45F84HwD1GC4wIfpI6yqNbYI0xL9kFmGFOabEkFbn82ym9BjcxHhBiJUHVDOy3fXJaej_CXZBt7LuQpPIWZr1r_OCM0_DD6dB5GW2I8NulPdy4U77AVRhjkh6u5JdLzka4G1proBph2lu49lankOMvznpzC64a6aO9O885-HxZ71ZvxWb7-r563hSyRHUqGNe6YapWnFfMGqMqzBmVmDaMEN1IzZpaW8MkKRVGeskN1oiqWmJuFKtYOQcP098-dKfBxiSOLmrrvWxtN0RBqiWlJaclydbFZM3tYgy2EX1wRxlGgZH4RSompOKMNAcep0DWxaEbQpub_Gf-AVToewo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584439432</pqid></control><display><type>article</type><title>Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field</title><source>ACS Publications</source><creator>Jonáš, Alexandr ; Pilát, Zdeněk ; Ježek, Jan ; Bernatová, Silvie ; Jedlička, Petr ; Aas, Mehdi ; Kiraz, Alper ; Zemánek, Pavel</creator><creatorcontrib>Jonáš, Alexandr ; Pilát, Zdeněk ; Ježek, Jan ; Bernatová, Silvie ; Jedlička, Petr ; Aas, Mehdi ; Kiraz, Alper ; Zemánek, Pavel</creatorcontrib><description>Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c11936</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces</subject><ispartof>ACS applied materials & interfaces, 2021-11, Vol.13 (43), p.50657-50667</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-69ccf6b7b9956eddb51964a14f622cfac6f7ced6a23b10c89d1c04b7a19db6563</citedby><cites>FETCH-LOGICAL-a307t-69ccf6b7b9956eddb51964a14f622cfac6f7ced6a23b10c89d1c04b7a19db6563</cites><orcidid>0000-0001-9259-8393 ; 0000-0002-3555-6901 ; 0000-0001-7977-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c11936$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c11936$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Jonáš, Alexandr</creatorcontrib><creatorcontrib>Pilát, Zdeněk</creatorcontrib><creatorcontrib>Ježek, Jan</creatorcontrib><creatorcontrib>Bernatová, Silvie</creatorcontrib><creatorcontrib>Jedlička, Petr</creatorcontrib><creatorcontrib>Aas, Mehdi</creatorcontrib><creatorcontrib>Kiraz, Alper</creatorcontrib><creatorcontrib>Zemánek, Pavel</creatorcontrib><title>Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKtb11mKMDXJZDLNUkp9QKWbug55DU1JZ6ZJRpl_b2SKO1f3cu45F84HwD1GC4wIfpI6yqNbYI0xL9kFmGFOabEkFbn82ym9BjcxHhBiJUHVDOy3fXJaej_CXZBt7LuQpPIWZr1r_OCM0_DD6dB5GW2I8NulPdy4U77AVRhjkh6u5JdLzka4G1proBph2lu49lankOMvznpzC64a6aO9O885-HxZ71ZvxWb7-r563hSyRHUqGNe6YapWnFfMGqMqzBmVmDaMEN1IzZpaW8MkKRVGeskN1oiqWmJuFKtYOQcP098-dKfBxiSOLmrrvWxtN0RBqiWlJaclydbFZM3tYgy2EX1wRxlGgZH4RSompOKMNAcep0DWxaEbQpub_Gf-AVToewo</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Jonáš, Alexandr</creator><creator>Pilát, Zdeněk</creator><creator>Ježek, Jan</creator><creator>Bernatová, Silvie</creator><creator>Jedlička, Petr</creator><creator>Aas, Mehdi</creator><creator>Kiraz, Alper</creator><creator>Zemánek, Pavel</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9259-8393</orcidid><orcidid>https://orcid.org/0000-0002-3555-6901</orcidid><orcidid>https://orcid.org/0000-0001-7977-1286</orcidid></search><sort><creationdate>20211103</creationdate><title>Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field</title><author>Jonáš, Alexandr ; Pilát, Zdeněk ; Ježek, Jan ; Bernatová, Silvie ; Jedlička, Petr ; Aas, Mehdi ; Kiraz, Alper ; Zemánek, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-69ccf6b7b9956eddb51964a14f622cfac6f7ced6a23b10c89d1c04b7a19db6563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonáš, Alexandr</creatorcontrib><creatorcontrib>Pilát, Zdeněk</creatorcontrib><creatorcontrib>Ježek, Jan</creatorcontrib><creatorcontrib>Bernatová, Silvie</creatorcontrib><creatorcontrib>Jedlička, Petr</creatorcontrib><creatorcontrib>Aas, Mehdi</creatorcontrib><creatorcontrib>Kiraz, Alper</creatorcontrib><creatorcontrib>Zemánek, Pavel</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonáš, Alexandr</au><au>Pilát, Zdeněk</au><au>Ježek, Jan</au><au>Bernatová, Silvie</au><au>Jedlička, Petr</au><au>Aas, Mehdi</au><au>Kiraz, Alper</au><au>Zemánek, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-11-03</date><risdate>2021</risdate><volume>13</volume><issue>43</issue><spage>50657</spage><epage>50667</epage><pages>50657-50667</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c11936</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9259-8393</orcidid><orcidid>https://orcid.org/0000-0002-3555-6901</orcidid><orcidid>https://orcid.org/0000-0001-7977-1286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-11, Vol.13 (43), p.50657-50667 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2584439432 |
source | ACS Publications |
subjects | Biological and Medical Applications of Materials and Interfaces |
title | Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Transportable%20Optofluidic%20Microlasers%20with%20Liquid%20Crystal%20Cavities%20Tuned%20by%20the%20Electric%20Field&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jona%CC%81s%CC%8C,%20Alexandr&rft.date=2021-11-03&rft.volume=13&rft.issue=43&rft.spage=50657&rft.epage=50667&rft.pages=50657-50667&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c11936&rft_dat=%3Cproquest_cross%3E2584439432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584439432&rft_id=info:pmid/&rfr_iscdi=true |