Moderate Surface Segregation Promotes Selective Ethanol Production in CO2 Hydrogenation Reaction over CoCu Catalysts

Cobalt‐copper (CoCu) catalysts have industrial potential in CO/CO2 hydrogenation reactions, and CoCu alloy has been elucidated as a major active phase during reactions. However, due to elemental surface segregation and dealloying phenomena, the actual surface morphology of CoCu alloy is still unclea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-01, Vol.61 (2), p.e202109027-n/a
Hauptverfasser: Liu, Sihang, Yang, Chengsheng, Zha, Shenjun, Sharapa, Dmitry, Studt, Felix, Zhao, Zhi‐Jian, Gong, Jinlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e202109027
container_title Angewandte Chemie International Edition
container_volume 61
creator Liu, Sihang
Yang, Chengsheng
Zha, Shenjun
Sharapa, Dmitry
Studt, Felix
Zhao, Zhi‐Jian
Gong, Jinlong
description Cobalt‐copper (CoCu) catalysts have industrial potential in CO/CO2 hydrogenation reactions, and CoCu alloy has been elucidated as a major active phase during reactions. However, due to elemental surface segregation and dealloying phenomena, the actual surface morphology of CoCu alloy is still unclear. Combining theory and experiment, the dual effect of surface segregation and varied CO coverage over the CoCu(111) surface on the reactivity in CO2 hydrogenation reactions is explored. The relationship between C−O bond scission and further hydrogenation of intermediate *CH2O was discovered to be a key step to promote ethanol production. The theoretical investigation suggests that moderate Co segregation provides a suitable surface Co ensemble with lateral interactions of co‐adsorbed *CO, leading to promoted selectivity to ethanol, in agreement with theory‐inspired experiments. A method is described for theory‐based catalyst optimization of CoCu alloys in CO2 hydrogenation. Moderate Co surface segregation, boosted ethanol production, and suppressed methane generation suggest that theory‐guided catalyst optimization could be beneficial in similar alloy systems.
doi_str_mv 10.1002/anie.202109027
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584438949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616237977</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2667-73c5354f19e0c0e2401bed3f41e7cea6061df6441d0ddbc39e9afd5ec81941e53</originalsourceid><addsrcrecordid>eNpdkUlPwzAQhS0EEqVw5RyJC5cUb1l8rKJCKxWKWM6Wa09KqjQutlOUf09KEAdOs7xvRqN5CF0TPCEY0zvVVDChmBIsMM1O0IgklMQsy9hpn3PG4ixPyDm68H7b83mO0xEKj9aAUwGi19aVSvcRNg42KlS2iZ6d3dkAvm_WoEN1gGgWPlRj66NkWv1DVU1UrGg074yzG2iG0RdQg2oP4KLCFm1UqKDqzgd_ic5KVXu4-o1j9H4_eyvm8XL1sCimy3hP0zSLM6YTlvCSCMAaA-WYrMGwkhPINKgUp8SUKefEYGPWmgkQqjQJ6JyInknYGN0Oe_fOfrbgg9xVXkNdqwZs6yVNcs5ZLrjo0Zt_6Na2rumvkzQlKWWZ6B85RmKgvqoaOrl31U65ThIsjw7IowPyzwE5fVrM_ir2DfjSfZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616237977</pqid></control><display><type>article</type><title>Moderate Surface Segregation Promotes Selective Ethanol Production in CO2 Hydrogenation Reaction over CoCu Catalysts</title><source>Wiley Online Library</source><creator>Liu, Sihang ; Yang, Chengsheng ; Zha, Shenjun ; Sharapa, Dmitry ; Studt, Felix ; Zhao, Zhi‐Jian ; Gong, Jinlong</creator><creatorcontrib>Liu, Sihang ; Yang, Chengsheng ; Zha, Shenjun ; Sharapa, Dmitry ; Studt, Felix ; Zhao, Zhi‐Jian ; Gong, Jinlong</creatorcontrib><description>Cobalt‐copper (CoCu) catalysts have industrial potential in CO/CO2 hydrogenation reactions, and CoCu alloy has been elucidated as a major active phase during reactions. However, due to elemental surface segregation and dealloying phenomena, the actual surface morphology of CoCu alloy is still unclear. Combining theory and experiment, the dual effect of surface segregation and varied CO coverage over the CoCu(111) surface on the reactivity in CO2 hydrogenation reactions is explored. The relationship between C−O bond scission and further hydrogenation of intermediate *CH2O was discovered to be a key step to promote ethanol production. The theoretical investigation suggests that moderate Co segregation provides a suitable surface Co ensemble with lateral interactions of co‐adsorbed *CO, leading to promoted selectivity to ethanol, in agreement with theory‐inspired experiments. A method is described for theory‐based catalyst optimization of CoCu alloys in CO2 hydrogenation. Moderate Co surface segregation, boosted ethanol production, and suppressed methane generation suggest that theory‐guided catalyst optimization could be beneficial in similar alloy systems.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202109027</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; catalyst optimization ; Catalysts ; Cleavage ; CO2 hydrogenation ; Cobalt ; CoCu alloy ; Ethanol ; ethanol production ; Hydrogenation ; Selectivity ; surface segregation</subject><ispartof>Angewandte Chemie International Edition, 2022-01, Vol.61 (2), p.e202109027-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8856-5078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202109027$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202109027$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Liu, Sihang</creatorcontrib><creatorcontrib>Yang, Chengsheng</creatorcontrib><creatorcontrib>Zha, Shenjun</creatorcontrib><creatorcontrib>Sharapa, Dmitry</creatorcontrib><creatorcontrib>Studt, Felix</creatorcontrib><creatorcontrib>Zhao, Zhi‐Jian</creatorcontrib><creatorcontrib>Gong, Jinlong</creatorcontrib><title>Moderate Surface Segregation Promotes Selective Ethanol Production in CO2 Hydrogenation Reaction over CoCu Catalysts</title><title>Angewandte Chemie International Edition</title><description>Cobalt‐copper (CoCu) catalysts have industrial potential in CO/CO2 hydrogenation reactions, and CoCu alloy has been elucidated as a major active phase during reactions. However, due to elemental surface segregation and dealloying phenomena, the actual surface morphology of CoCu alloy is still unclear. Combining theory and experiment, the dual effect of surface segregation and varied CO coverage over the CoCu(111) surface on the reactivity in CO2 hydrogenation reactions is explored. The relationship between C−O bond scission and further hydrogenation of intermediate *CH2O was discovered to be a key step to promote ethanol production. The theoretical investigation suggests that moderate Co segregation provides a suitable surface Co ensemble with lateral interactions of co‐adsorbed *CO, leading to promoted selectivity to ethanol, in agreement with theory‐inspired experiments. A method is described for theory‐based catalyst optimization of CoCu alloys in CO2 hydrogenation. Moderate Co surface segregation, boosted ethanol production, and suppressed methane generation suggest that theory‐guided catalyst optimization could be beneficial in similar alloy systems.</description><subject>Carbon dioxide</subject><subject>catalyst optimization</subject><subject>Catalysts</subject><subject>Cleavage</subject><subject>CO2 hydrogenation</subject><subject>Cobalt</subject><subject>CoCu alloy</subject><subject>Ethanol</subject><subject>ethanol production</subject><subject>Hydrogenation</subject><subject>Selectivity</subject><subject>surface segregation</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAQhS0EEqVw5RyJC5cUb1l8rKJCKxWKWM6Wa09KqjQutlOUf09KEAdOs7xvRqN5CF0TPCEY0zvVVDChmBIsMM1O0IgklMQsy9hpn3PG4ixPyDm68H7b83mO0xEKj9aAUwGi19aVSvcRNg42KlS2iZ6d3dkAvm_WoEN1gGgWPlRj66NkWv1DVU1UrGg074yzG2iG0RdQg2oP4KLCFm1UqKDqzgd_ic5KVXu4-o1j9H4_eyvm8XL1sCimy3hP0zSLM6YTlvCSCMAaA-WYrMGwkhPINKgUp8SUKefEYGPWmgkQqjQJ6JyInknYGN0Oe_fOfrbgg9xVXkNdqwZs6yVNcs5ZLrjo0Zt_6Na2rumvkzQlKWWZ6B85RmKgvqoaOrl31U65ThIsjw7IowPyzwE5fVrM_ir2DfjSfZY</recordid><startdate>20220110</startdate><enddate>20220110</enddate><creator>Liu, Sihang</creator><creator>Yang, Chengsheng</creator><creator>Zha, Shenjun</creator><creator>Sharapa, Dmitry</creator><creator>Studt, Felix</creator><creator>Zhao, Zhi‐Jian</creator><creator>Gong, Jinlong</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8856-5078</orcidid></search><sort><creationdate>20220110</creationdate><title>Moderate Surface Segregation Promotes Selective Ethanol Production in CO2 Hydrogenation Reaction over CoCu Catalysts</title><author>Liu, Sihang ; Yang, Chengsheng ; Zha, Shenjun ; Sharapa, Dmitry ; Studt, Felix ; Zhao, Zhi‐Jian ; Gong, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2667-73c5354f19e0c0e2401bed3f41e7cea6061df6441d0ddbc39e9afd5ec81941e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>catalyst optimization</topic><topic>Catalysts</topic><topic>Cleavage</topic><topic>CO2 hydrogenation</topic><topic>Cobalt</topic><topic>CoCu alloy</topic><topic>Ethanol</topic><topic>ethanol production</topic><topic>Hydrogenation</topic><topic>Selectivity</topic><topic>surface segregation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sihang</creatorcontrib><creatorcontrib>Yang, Chengsheng</creatorcontrib><creatorcontrib>Zha, Shenjun</creatorcontrib><creatorcontrib>Sharapa, Dmitry</creatorcontrib><creatorcontrib>Studt, Felix</creatorcontrib><creatorcontrib>Zhao, Zhi‐Jian</creatorcontrib><creatorcontrib>Gong, Jinlong</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sihang</au><au>Yang, Chengsheng</au><au>Zha, Shenjun</au><au>Sharapa, Dmitry</au><au>Studt, Felix</au><au>Zhao, Zhi‐Jian</au><au>Gong, Jinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moderate Surface Segregation Promotes Selective Ethanol Production in CO2 Hydrogenation Reaction over CoCu Catalysts</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-01-10</date><risdate>2022</risdate><volume>61</volume><issue>2</issue><spage>e202109027</spage><epage>n/a</epage><pages>e202109027-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Cobalt‐copper (CoCu) catalysts have industrial potential in CO/CO2 hydrogenation reactions, and CoCu alloy has been elucidated as a major active phase during reactions. However, due to elemental surface segregation and dealloying phenomena, the actual surface morphology of CoCu alloy is still unclear. Combining theory and experiment, the dual effect of surface segregation and varied CO coverage over the CoCu(111) surface on the reactivity in CO2 hydrogenation reactions is explored. The relationship between C−O bond scission and further hydrogenation of intermediate *CH2O was discovered to be a key step to promote ethanol production. The theoretical investigation suggests that moderate Co segregation provides a suitable surface Co ensemble with lateral interactions of co‐adsorbed *CO, leading to promoted selectivity to ethanol, in agreement with theory‐inspired experiments. A method is described for theory‐based catalyst optimization of CoCu alloys in CO2 hydrogenation. Moderate Co surface segregation, boosted ethanol production, and suppressed methane generation suggest that theory‐guided catalyst optimization could be beneficial in similar alloy systems.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202109027</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8856-5078</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-01, Vol.61 (2), p.e202109027-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2584438949
source Wiley Online Library
subjects Carbon dioxide
catalyst optimization
Catalysts
Cleavage
CO2 hydrogenation
Cobalt
CoCu alloy
Ethanol
ethanol production
Hydrogenation
Selectivity
surface segregation
title Moderate Surface Segregation Promotes Selective Ethanol Production in CO2 Hydrogenation Reaction over CoCu Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moderate%20Surface%20Segregation%20Promotes%20Selective%20Ethanol%20Production%20in%20CO2%20Hydrogenation%20Reaction%20over%20CoCu%20Catalysts&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Liu,%20Sihang&rft.date=2022-01-10&rft.volume=61&rft.issue=2&rft.spage=e202109027&rft.epage=n/a&rft.pages=e202109027-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202109027&rft_dat=%3Cproquest_wiley%3E2616237977%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616237977&rft_id=info:pmid/&rfr_iscdi=true