Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma

Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal for immunotherapy of cancer 2021-10, Vol.9 (10), p.e002170, Article 002170
Hauptverfasser: Leb-Reichl, Victoria M, Kienzl, Melanie, Kaufmann, Anna, Stoecklinger, Angelika, Tockner, Birgit, Kitzmueller, Sophie, Zaborsky, Nadja, Steiner, Markus, Brachtl, Gabriele, Trattner, Lisa, Kreideweiss, Patrick, Reinsch, Christian, Panzner, Steffen, Greil, Richard, Strunk, Dirk, Bauer, Johann W, Gratz, Iris K, Guttmann-Gruber, Christina, Piñón Hofbauer, Josefina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e002170
container_title Journal for immunotherapy of cancer
container_volume 9
creator Leb-Reichl, Victoria M
Kienzl, Melanie
Kaufmann, Anna
Stoecklinger, Angelika
Tockner, Birgit
Kitzmueller, Sophie
Zaborsky, Nadja
Steiner, Markus
Brachtl, Gabriele
Trattner, Lisa
Kreideweiss, Patrick
Reinsch, Christian
Panzner, Steffen
Greil, Richard
Strunk, Dirk
Bauer, Johann W
Gratz, Iris K
Guttmann-Gruber, Christina
Piñón Hofbauer, Josefina
description Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.
doi_str_mv 10.1136/jitc-2020-002170
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584438322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d8232231079d46b0a8ddef66d5eb1f23</doaj_id><sourcerecordid>2584438322</sourcerecordid><originalsourceid>FETCH-LOGICAL-b527t-cdfc90154922cdf0a400110fe696f56d076194fe1e57ab4a611e5c38cde94a4f3</originalsourceid><addsrcrecordid>eNqNks-L1DAUx4so7jLu3ZMEvAhaze-2F0EGfywMeNFzSNPXmqFNZpN0ZO7-4aZ2HXcFQQjkJfm8L--9fIviKcGvCWHyzd4mU1JMcYkxJRV-UFxSLEhJOJUP78QXxVWMe4wxwYzVdf24uGBcVgLL6rL4sYMjBD1YNyA7TbMDNMHkwwnpQVsXUz7qOEJERxvmiHReLq9k05wxFFPQCYYTsvkWHQKY0Tpr9Igm38GIfJ-FhgAx2iOgeDPryWcZA-OIjA7GOj_pJ8WjXo8Rrm73TfH1w_sv20_l7vPH6-27XdkKWqXSdL1pMBG8oTTHWPPcE8E9yEb2Qna4kqThPRAQlW65liRHhtWmg4Zr3rNNcb3qdl7v1SHYSYeT8tqqXxc-DEqHZM0Iqqspo5QRXDUdly3WdddBL2UnoCU9ZVnr7ap1mNsJOgMuT2K8J3r_xdlvavBHVQtGhaizwItbgeBvZohJTTYuc9EO8ogUFTXnrF6q2BTP_0L3fg4ujypTDZMV4azKFF4pE3yMAfpzMQSrxTFqcYxaHKNWx-SUZ3ebOCf89kcGXq7Ad2h9H40FZ-CMZU9V-QNEI_Bir0zX_09vbdLJerf1s0s59dWa2k77P939s_CfSV_trg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593671437</pqid></control><display><type>article</type><title>Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma</title><source>BMJ Open Access Journals</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Leb-Reichl, Victoria M ; Kienzl, Melanie ; Kaufmann, Anna ; Stoecklinger, Angelika ; Tockner, Birgit ; Kitzmueller, Sophie ; Zaborsky, Nadja ; Steiner, Markus ; Brachtl, Gabriele ; Trattner, Lisa ; Kreideweiss, Patrick ; Reinsch, Christian ; Panzner, Steffen ; Greil, Richard ; Strunk, Dirk ; Bauer, Johann W ; Gratz, Iris K ; Guttmann-Gruber, Christina ; Piñón Hofbauer, Josefina</creator><creatorcontrib>Leb-Reichl, Victoria M ; Kienzl, Melanie ; Kaufmann, Anna ; Stoecklinger, Angelika ; Tockner, Birgit ; Kitzmueller, Sophie ; Zaborsky, Nadja ; Steiner, Markus ; Brachtl, Gabriele ; Trattner, Lisa ; Kreideweiss, Patrick ; Reinsch, Christian ; Panzner, Steffen ; Greil, Richard ; Strunk, Dirk ; Bauer, Johann W ; Gratz, Iris K ; Guttmann-Gruber, Christina ; Piñón Hofbauer, Josefina</creatorcontrib><description>Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.</description><identifier>ISSN: 2051-1426</identifier><identifier>EISSN: 2051-1426</identifier><identifier>DOI: 10.1136/jitc-2020-002170</identifier><identifier>PMID: 34675067</identifier><language>eng</language><publisher>LONDON: BMJ Publishing Group Ltd</publisher><subject>Animals ; Antibodies ; Antigens ; Cancer ; Cancer vaccines ; Carcinoma, Squamous Cell - immunology ; CD8-positive T-lymphocytes ; CD8-Positive T-Lymphocytes - immunology ; Cell growth ; cellular ; Cytokines ; Cytotoxicity ; Dendritic cells ; Disease Models, Animal ; Experiments ; Flow cytometry ; Humans ; immunity ; immunogenicity ; Immunologic Memory - immunology ; Immunology ; Immunotherapy ; investigational ; Life Sciences &amp; Biomedicine ; Lymphocytes ; Measles ; Measles virus - immunology ; Mice ; Mutation ; Oncology ; Oncolytic and Local Immunotherapy ; Peptides ; Proteins ; Science &amp; Technology ; Skin cancer ; skin neoplasms ; Squamous cell carcinoma ; therapies ; Tumors ; vaccine ; Vaccines ; Viruses</subject><ispartof>Journal for immunotherapy of cancer, 2021-10, Vol.9 (10), p.e002170, Article 002170</ispartof><rights>Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000711059500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-b527t-cdfc90154922cdf0a400110fe696f56d076194fe1e57ab4a611e5c38cde94a4f3</citedby><cites>FETCH-LOGICAL-b527t-cdfc90154922cdf0a400110fe696f56d076194fe1e57ab4a611e5c38cde94a4f3</cites><orcidid>0000-0002-8558-9031 ; 0000-0001-8232-5068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://jitc.bmj.com/content/9/10/e002170.full.pdf$$EPDF$$P50$$Gbmj$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://jitc.bmj.com/content/9/10/e002170.full$$EHTML$$P50$$Gbmj$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,39267,53800,53802,55359,77670,77696</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34675067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leb-Reichl, Victoria M</creatorcontrib><creatorcontrib>Kienzl, Melanie</creatorcontrib><creatorcontrib>Kaufmann, Anna</creatorcontrib><creatorcontrib>Stoecklinger, Angelika</creatorcontrib><creatorcontrib>Tockner, Birgit</creatorcontrib><creatorcontrib>Kitzmueller, Sophie</creatorcontrib><creatorcontrib>Zaborsky, Nadja</creatorcontrib><creatorcontrib>Steiner, Markus</creatorcontrib><creatorcontrib>Brachtl, Gabriele</creatorcontrib><creatorcontrib>Trattner, Lisa</creatorcontrib><creatorcontrib>Kreideweiss, Patrick</creatorcontrib><creatorcontrib>Reinsch, Christian</creatorcontrib><creatorcontrib>Panzner, Steffen</creatorcontrib><creatorcontrib>Greil, Richard</creatorcontrib><creatorcontrib>Strunk, Dirk</creatorcontrib><creatorcontrib>Bauer, Johann W</creatorcontrib><creatorcontrib>Gratz, Iris K</creatorcontrib><creatorcontrib>Guttmann-Gruber, Christina</creatorcontrib><creatorcontrib>Piñón Hofbauer, Josefina</creatorcontrib><title>Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma</title><title>Journal for immunotherapy of cancer</title><addtitle>J Immunother Cancer</addtitle><addtitle>J IMMUNOTHER CANCER</addtitle><addtitle>J Immunother Cancer</addtitle><description>Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Cancer</subject><subject>Cancer vaccines</subject><subject>Carcinoma, Squamous Cell - immunology</subject><subject>CD8-positive T-lymphocytes</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell growth</subject><subject>cellular</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Dendritic cells</subject><subject>Disease Models, Animal</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Humans</subject><subject>immunity</subject><subject>immunogenicity</subject><subject>Immunologic Memory - immunology</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>investigational</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lymphocytes</subject><subject>Measles</subject><subject>Measles virus - immunology</subject><subject>Mice</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Oncolytic and Local Immunotherapy</subject><subject>Peptides</subject><subject>Proteins</subject><subject>Science &amp; Technology</subject><subject>Skin cancer</subject><subject>skin neoplasms</subject><subject>Squamous cell carcinoma</subject><subject>therapies</subject><subject>Tumors</subject><subject>vaccine</subject><subject>Vaccines</subject><subject>Viruses</subject><issn>2051-1426</issn><issn>2051-1426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>9YT</sourceid><sourceid>ACMMV</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNks-L1DAUx4so7jLu3ZMEvAhaze-2F0EGfywMeNFzSNPXmqFNZpN0ZO7-4aZ2HXcFQQjkJfm8L--9fIviKcGvCWHyzd4mU1JMcYkxJRV-UFxSLEhJOJUP78QXxVWMe4wxwYzVdf24uGBcVgLL6rL4sYMjBD1YNyA7TbMDNMHkwwnpQVsXUz7qOEJERxvmiHReLq9k05wxFFPQCYYTsvkWHQKY0Tpr9Igm38GIfJ-FhgAx2iOgeDPryWcZA-OIjA7GOj_pJ8WjXo8Rrm73TfH1w_sv20_l7vPH6-27XdkKWqXSdL1pMBG8oTTHWPPcE8E9yEb2Qna4kqThPRAQlW65liRHhtWmg4Zr3rNNcb3qdl7v1SHYSYeT8tqqXxc-DEqHZM0Iqqspo5QRXDUdly3WdddBL2UnoCU9ZVnr7ap1mNsJOgMuT2K8J3r_xdlvavBHVQtGhaizwItbgeBvZohJTTYuc9EO8ogUFTXnrF6q2BTP_0L3fg4ujypTDZMV4azKFF4pE3yMAfpzMQSrxTFqcYxaHKNWx-SUZ3ebOCf89kcGXq7Ad2h9H40FZ-CMZU9V-QNEI_Bir0zX_09vbdLJerf1s0s59dWa2k77P939s_CfSV_trg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Leb-Reichl, Victoria M</creator><creator>Kienzl, Melanie</creator><creator>Kaufmann, Anna</creator><creator>Stoecklinger, Angelika</creator><creator>Tockner, Birgit</creator><creator>Kitzmueller, Sophie</creator><creator>Zaborsky, Nadja</creator><creator>Steiner, Markus</creator><creator>Brachtl, Gabriele</creator><creator>Trattner, Lisa</creator><creator>Kreideweiss, Patrick</creator><creator>Reinsch, Christian</creator><creator>Panzner, Steffen</creator><creator>Greil, Richard</creator><creator>Strunk, Dirk</creator><creator>Bauer, Johann W</creator><creator>Gratz, Iris K</creator><creator>Guttmann-Gruber, Christina</creator><creator>Piñón Hofbauer, Josefina</creator><general>BMJ Publishing Group Ltd</general><general>Bmj Publishing Group</general><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>9YT</scope><scope>ACMMV</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8558-9031</orcidid><orcidid>https://orcid.org/0000-0001-8232-5068</orcidid></search><sort><creationdate>20211001</creationdate><title>Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma</title><author>Leb-Reichl, Victoria M ; Kienzl, Melanie ; Kaufmann, Anna ; Stoecklinger, Angelika ; Tockner, Birgit ; Kitzmueller, Sophie ; Zaborsky, Nadja ; Steiner, Markus ; Brachtl, Gabriele ; Trattner, Lisa ; Kreideweiss, Patrick ; Reinsch, Christian ; Panzner, Steffen ; Greil, Richard ; Strunk, Dirk ; Bauer, Johann W ; Gratz, Iris K ; Guttmann-Gruber, Christina ; Piñón Hofbauer, Josefina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b527t-cdfc90154922cdf0a400110fe696f56d076194fe1e57ab4a611e5c38cde94a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Cancer</topic><topic>Cancer vaccines</topic><topic>Carcinoma, Squamous Cell - immunology</topic><topic>CD8-positive T-lymphocytes</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell growth</topic><topic>cellular</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Dendritic cells</topic><topic>Disease Models, Animal</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Humans</topic><topic>immunity</topic><topic>immunogenicity</topic><topic>Immunologic Memory - immunology</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>investigational</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lymphocytes</topic><topic>Measles</topic><topic>Measles virus - immunology</topic><topic>Mice</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Oncolytic and Local Immunotherapy</topic><topic>Peptides</topic><topic>Proteins</topic><topic>Science &amp; Technology</topic><topic>Skin cancer</topic><topic>skin neoplasms</topic><topic>Squamous cell carcinoma</topic><topic>therapies</topic><topic>Tumors</topic><topic>vaccine</topic><topic>Vaccines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leb-Reichl, Victoria M</creatorcontrib><creatorcontrib>Kienzl, Melanie</creatorcontrib><creatorcontrib>Kaufmann, Anna</creatorcontrib><creatorcontrib>Stoecklinger, Angelika</creatorcontrib><creatorcontrib>Tockner, Birgit</creatorcontrib><creatorcontrib>Kitzmueller, Sophie</creatorcontrib><creatorcontrib>Zaborsky, Nadja</creatorcontrib><creatorcontrib>Steiner, Markus</creatorcontrib><creatorcontrib>Brachtl, Gabriele</creatorcontrib><creatorcontrib>Trattner, Lisa</creatorcontrib><creatorcontrib>Kreideweiss, Patrick</creatorcontrib><creatorcontrib>Reinsch, Christian</creatorcontrib><creatorcontrib>Panzner, Steffen</creatorcontrib><creatorcontrib>Greil, Richard</creatorcontrib><creatorcontrib>Strunk, Dirk</creatorcontrib><creatorcontrib>Bauer, Johann W</creatorcontrib><creatorcontrib>Gratz, Iris K</creatorcontrib><creatorcontrib>Guttmann-Gruber, Christina</creatorcontrib><creatorcontrib>Piñón Hofbauer, Josefina</creatorcontrib><collection>BMJ Open Access Journals</collection><collection>BMJ Journals:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal for immunotherapy of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leb-Reichl, Victoria M</au><au>Kienzl, Melanie</au><au>Kaufmann, Anna</au><au>Stoecklinger, Angelika</au><au>Tockner, Birgit</au><au>Kitzmueller, Sophie</au><au>Zaborsky, Nadja</au><au>Steiner, Markus</au><au>Brachtl, Gabriele</au><au>Trattner, Lisa</au><au>Kreideweiss, Patrick</au><au>Reinsch, Christian</au><au>Panzner, Steffen</au><au>Greil, Richard</au><au>Strunk, Dirk</au><au>Bauer, Johann W</au><au>Gratz, Iris K</au><au>Guttmann-Gruber, Christina</au><au>Piñón Hofbauer, Josefina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma</atitle><jtitle>Journal for immunotherapy of cancer</jtitle><stitle>J Immunother Cancer</stitle><stitle>J IMMUNOTHER CANCER</stitle><addtitle>J Immunother Cancer</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>9</volume><issue>10</issue><spage>e002170</spage><pages>e002170-</pages><artnum>002170</artnum><issn>2051-1426</issn><eissn>2051-1426</eissn><abstract>Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.</abstract><cop>LONDON</cop><pub>BMJ Publishing Group Ltd</pub><pmid>34675067</pmid><doi>10.1136/jitc-2020-002170</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8558-9031</orcidid><orcidid>https://orcid.org/0000-0001-8232-5068</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-1426
ispartof Journal for immunotherapy of cancer, 2021-10, Vol.9 (10), p.e002170, Article 002170
issn 2051-1426
2051-1426
language eng
recordid cdi_proquest_miscellaneous_2584438322
source BMJ Open Access Journals; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Animals
Antibodies
Antigens
Cancer
Cancer vaccines
Carcinoma, Squamous Cell - immunology
CD8-positive T-lymphocytes
CD8-Positive T-Lymphocytes - immunology
Cell growth
cellular
Cytokines
Cytotoxicity
Dendritic cells
Disease Models, Animal
Experiments
Flow cytometry
Humans
immunity
immunogenicity
Immunologic Memory - immunology
Immunology
Immunotherapy
investigational
Life Sciences & Biomedicine
Lymphocytes
Measles
Measles virus - immunology
Mice
Mutation
Oncology
Oncolytic and Local Immunotherapy
Peptides
Proteins
Science & Technology
Skin cancer
skin neoplasms
Squamous cell carcinoma
therapies
Tumors
vaccine
Vaccines
Viruses
title Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T02%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20immune%20memory%20against%20measles%20virus%20as%20an%20antitumor%20strategy%20in%20a%20preclinical%20model%20of%20aggressive%20squamous%20cell%20carcinoma&rft.jtitle=Journal%20for%20immunotherapy%20of%20cancer&rft.au=Leb-Reichl,%20Victoria%20M&rft.date=2021-10-01&rft.volume=9&rft.issue=10&rft.spage=e002170&rft.pages=e002170-&rft.artnum=002170&rft.issn=2051-1426&rft.eissn=2051-1426&rft_id=info:doi/10.1136/jitc-2020-002170&rft_dat=%3Cproquest_pubme%3E2584438322%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593671437&rft_id=info:pmid/34675067&rft_doaj_id=oai_doaj_org_article_d8232231079d46b0a8ddef66d5eb1f23&rfr_iscdi=true