Aorta-aware GAN for non-contrast to artery contrasted CT translation and its application to abdominal aortic aneurysm detection

Purpose Artery contrasted computed tomography (CT) enables accurate observations of the arteries and surrounding structures, thus being widely used for the diagnosis of diseases such as aneurysm. To avoid the complications caused by contrast agent, this paper proposes an aorta-aware deep learning me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2022, Vol.17 (1), p.97-105
Hauptverfasser: Hu, Tao, Oda, Masahiro, Hayashi, Yuichiro, Lu, Zhongyang, Kumamaru, Kanako Kunishima, Akashi, Toshiaki, Aoki, Shigeki, Mori, Kensaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1
container_start_page 97
container_title International journal for computer assisted radiology and surgery
container_volume 17
creator Hu, Tao
Oda, Masahiro
Hayashi, Yuichiro
Lu, Zhongyang
Kumamaru, Kanako Kunishima
Akashi, Toshiaki
Aoki, Shigeki
Mori, Kensaku
description Purpose Artery contrasted computed tomography (CT) enables accurate observations of the arteries and surrounding structures, thus being widely used for the diagnosis of diseases such as aneurysm. To avoid the complications caused by contrast agent, this paper proposes an aorta-aware deep learning method to synthesize artery contrasted CT volume form non-contrast CT volume. Methods By introducing auxiliary multi-resolution segmentation tasks in the generator, we force the proposed network to focus on the regions of aorta and the other vascular structures. Then, the segmentation results produced by the auxiliary tasks were used to extract aorta. The detection of abnormal CT images containing aneurysm was implemented by estimating the maximum axial radius of aorta. Results In comparison with the baseline models, the proposed network with auxiliary tasks achieved better performances with higher peak signal-noise ratio value. In aorta regions which are supposed to be the main region of interest in many clinic scenarios, the average improvement can be up to 0.33dB. Using the synthesized artery contrasted CT, the F score of aneurysm detection achieved 0.58 at slice level and 0.85 at case level. Conclusion This study tries to address the problem of non-contrast to artery contrasted CT modality translation by employing a deep learning model with aorta awareness. The auxiliary tasks help the proposed model focus on aorta regions and synthesize results with clearer boundaries. Additionally, the synthesized artery contrasted CT shows potential in identifying slices with abdominal aortic aneurysm, and may provide an option for patients with contrast agent allergy.
doi_str_mv 10.1007/s11548-021-02492-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584437443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617315566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-eae1c0882ae86615ca3a6642cf6d652b762fddb3446cdd790bc8e1804dc046a63</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMofqz-AQ8S8OKlmjQf7R6XRVdh0YuewzRJpdI2a5Iie_Kvm7XuCh48DBkmz7wzw4vQOSXXlJDiJlAqeJmRnKbg0zwje-iYlpJmkufT_V1OyRE6CeGNEC4KJg7REeOy4JTJY_Q5cz5CBh_gLV7MHnHtPO5dn2nXRw8h4ugw-Gj9Gm9L1uD5M05pH1qIjesx9AY3MWBYrdpGj7VNX2Vc1_TQYkhTGp04O_h16LCx0eoNdooOamiDPft5J-jl7vZ5fp8tnxYP89ky06wQMbNgqSZlmYMtpaRCAwOZrtS1NFLkVSHz2piKcS61McWUVLq0tCTcaMIlSDZBV6Puyrv3wYaouiZo27ZpJTcElYuSc1akSOjlH_TNDT5dkShJC0aFkBvBfKS0dyF4W6uVbzrwa0WJ2tijRntUskd926NIarr4kR6qzppdy9aPBLARCOmrf7X-d_Y_sl9zMJw1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617315566</pqid></control><display><type>article</type><title>Aorta-aware GAN for non-contrast to artery contrasted CT translation and its application to abdominal aortic aneurysm detection</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Hu, Tao ; Oda, Masahiro ; Hayashi, Yuichiro ; Lu, Zhongyang ; Kumamaru, Kanako Kunishima ; Akashi, Toshiaki ; Aoki, Shigeki ; Mori, Kensaku</creator><creatorcontrib>Hu, Tao ; Oda, Masahiro ; Hayashi, Yuichiro ; Lu, Zhongyang ; Kumamaru, Kanako Kunishima ; Akashi, Toshiaki ; Aoki, Shigeki ; Mori, Kensaku</creatorcontrib><description>Purpose Artery contrasted computed tomography (CT) enables accurate observations of the arteries and surrounding structures, thus being widely used for the diagnosis of diseases such as aneurysm. To avoid the complications caused by contrast agent, this paper proposes an aorta-aware deep learning method to synthesize artery contrasted CT volume form non-contrast CT volume. Methods By introducing auxiliary multi-resolution segmentation tasks in the generator, we force the proposed network to focus on the regions of aorta and the other vascular structures. Then, the segmentation results produced by the auxiliary tasks were used to extract aorta. The detection of abnormal CT images containing aneurysm was implemented by estimating the maximum axial radius of aorta. Results In comparison with the baseline models, the proposed network with auxiliary tasks achieved better performances with higher peak signal-noise ratio value. In aorta regions which are supposed to be the main region of interest in many clinic scenarios, the average improvement can be up to 0.33dB. Using the synthesized artery contrasted CT, the F score of aneurysm detection achieved 0.58 at slice level and 0.85 at case level. Conclusion This study tries to address the problem of non-contrast to artery contrasted CT modality translation by employing a deep learning model with aorta awareness. The auxiliary tasks help the proposed model focus on aorta regions and synthesize results with clearer boundaries. Additionally, the synthesized artery contrasted CT shows potential in identifying slices with abdominal aortic aneurysm, and may provide an option for patients with contrast agent allergy.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-021-02492-0</identifier><identifier>PMID: 34674136</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aorta ; Aortic Aneurysm, Abdominal - diagnostic imaging ; Aortic aneurysms ; Arteries ; Computed tomography ; Computer Imaging ; Computer Science ; Contrast agents ; Coronary vessels ; Deep learning ; Health Informatics ; Humans ; Image segmentation ; Imaging ; Medicine ; Medicine &amp; Public Health ; Original Article ; Pattern Recognition and Graphics ; Radiology ; Signal to noise ratio ; Surgery ; Synthesis ; Tomography, X-Ray Computed ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2022, Vol.17 (1), p.97-105</ispartof><rights>CARS 2021</rights><rights>2021. CARS.</rights><rights>CARS 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-eae1c0882ae86615ca3a6642cf6d652b762fddb3446cdd790bc8e1804dc046a63</citedby><cites>FETCH-LOGICAL-c375t-eae1c0882ae86615ca3a6642cf6d652b762fddb3446cdd790bc8e1804dc046a63</cites><orcidid>0000-0002-7667-1666 ; 0000-0002-8491-0698 ; 0000-0002-0100-4797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-021-02492-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-021-02492-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34674136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Oda, Masahiro</creatorcontrib><creatorcontrib>Hayashi, Yuichiro</creatorcontrib><creatorcontrib>Lu, Zhongyang</creatorcontrib><creatorcontrib>Kumamaru, Kanako Kunishima</creatorcontrib><creatorcontrib>Akashi, Toshiaki</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Mori, Kensaku</creatorcontrib><title>Aorta-aware GAN for non-contrast to artery contrasted CT translation and its application to abdominal aortic aneurysm detection</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose Artery contrasted computed tomography (CT) enables accurate observations of the arteries and surrounding structures, thus being widely used for the diagnosis of diseases such as aneurysm. To avoid the complications caused by contrast agent, this paper proposes an aorta-aware deep learning method to synthesize artery contrasted CT volume form non-contrast CT volume. Methods By introducing auxiliary multi-resolution segmentation tasks in the generator, we force the proposed network to focus on the regions of aorta and the other vascular structures. Then, the segmentation results produced by the auxiliary tasks were used to extract aorta. The detection of abnormal CT images containing aneurysm was implemented by estimating the maximum axial radius of aorta. Results In comparison with the baseline models, the proposed network with auxiliary tasks achieved better performances with higher peak signal-noise ratio value. In aorta regions which are supposed to be the main region of interest in many clinic scenarios, the average improvement can be up to 0.33dB. Using the synthesized artery contrasted CT, the F score of aneurysm detection achieved 0.58 at slice level and 0.85 at case level. Conclusion This study tries to address the problem of non-contrast to artery contrasted CT modality translation by employing a deep learning model with aorta awareness. The auxiliary tasks help the proposed model focus on aorta regions and synthesize results with clearer boundaries. Additionally, the synthesized artery contrasted CT shows potential in identifying slices with abdominal aortic aneurysm, and may provide an option for patients with contrast agent allergy.</description><subject>Aorta</subject><subject>Aortic Aneurysm, Abdominal - diagnostic imaging</subject><subject>Aortic aneurysms</subject><subject>Arteries</subject><subject>Computed tomography</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Contrast agents</subject><subject>Coronary vessels</subject><subject>Deep learning</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Radiology</subject><subject>Signal to noise ratio</subject><subject>Surgery</subject><subject>Synthesis</subject><subject>Tomography, X-Ray Computed</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1LxDAQhoMofqz-AQ8S8OKlmjQf7R6XRVdh0YuewzRJpdI2a5Iie_Kvm7XuCh48DBkmz7wzw4vQOSXXlJDiJlAqeJmRnKbg0zwje-iYlpJmkufT_V1OyRE6CeGNEC4KJg7REeOy4JTJY_Q5cz5CBh_gLV7MHnHtPO5dn2nXRw8h4ugw-Gj9Gm9L1uD5M05pH1qIjesx9AY3MWBYrdpGj7VNX2Vc1_TQYkhTGp04O_h16LCx0eoNdooOamiDPft5J-jl7vZ5fp8tnxYP89ky06wQMbNgqSZlmYMtpaRCAwOZrtS1NFLkVSHz2piKcS61McWUVLq0tCTcaMIlSDZBV6Puyrv3wYaouiZo27ZpJTcElYuSc1akSOjlH_TNDT5dkShJC0aFkBvBfKS0dyF4W6uVbzrwa0WJ2tijRntUskd926NIarr4kR6qzppdy9aPBLARCOmrf7X-d_Y_sl9zMJw1</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hu, Tao</creator><creator>Oda, Masahiro</creator><creator>Hayashi, Yuichiro</creator><creator>Lu, Zhongyang</creator><creator>Kumamaru, Kanako Kunishima</creator><creator>Akashi, Toshiaki</creator><creator>Aoki, Shigeki</creator><creator>Mori, Kensaku</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7667-1666</orcidid><orcidid>https://orcid.org/0000-0002-8491-0698</orcidid><orcidid>https://orcid.org/0000-0002-0100-4797</orcidid></search><sort><creationdate>2022</creationdate><title>Aorta-aware GAN for non-contrast to artery contrasted CT translation and its application to abdominal aortic aneurysm detection</title><author>Hu, Tao ; Oda, Masahiro ; Hayashi, Yuichiro ; Lu, Zhongyang ; Kumamaru, Kanako Kunishima ; Akashi, Toshiaki ; Aoki, Shigeki ; Mori, Kensaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-eae1c0882ae86615ca3a6642cf6d652b762fddb3446cdd790bc8e1804dc046a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aorta</topic><topic>Aortic Aneurysm, Abdominal - diagnostic imaging</topic><topic>Aortic aneurysms</topic><topic>Arteries</topic><topic>Computed tomography</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Contrast agents</topic><topic>Coronary vessels</topic><topic>Deep learning</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Radiology</topic><topic>Signal to noise ratio</topic><topic>Surgery</topic><topic>Synthesis</topic><topic>Tomography, X-Ray Computed</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Oda, Masahiro</creatorcontrib><creatorcontrib>Hayashi, Yuichiro</creatorcontrib><creatorcontrib>Lu, Zhongyang</creatorcontrib><creatorcontrib>Kumamaru, Kanako Kunishima</creatorcontrib><creatorcontrib>Akashi, Toshiaki</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Mori, Kensaku</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Tao</au><au>Oda, Masahiro</au><au>Hayashi, Yuichiro</au><au>Lu, Zhongyang</au><au>Kumamaru, Kanako Kunishima</au><au>Akashi, Toshiaki</au><au>Aoki, Shigeki</au><au>Mori, Kensaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aorta-aware GAN for non-contrast to artery contrasted CT translation and its application to abdominal aortic aneurysm detection</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2022</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>97</spage><epage>105</epage><pages>97-105</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose Artery contrasted computed tomography (CT) enables accurate observations of the arteries and surrounding structures, thus being widely used for the diagnosis of diseases such as aneurysm. To avoid the complications caused by contrast agent, this paper proposes an aorta-aware deep learning method to synthesize artery contrasted CT volume form non-contrast CT volume. Methods By introducing auxiliary multi-resolution segmentation tasks in the generator, we force the proposed network to focus on the regions of aorta and the other vascular structures. Then, the segmentation results produced by the auxiliary tasks were used to extract aorta. The detection of abnormal CT images containing aneurysm was implemented by estimating the maximum axial radius of aorta. Results In comparison with the baseline models, the proposed network with auxiliary tasks achieved better performances with higher peak signal-noise ratio value. In aorta regions which are supposed to be the main region of interest in many clinic scenarios, the average improvement can be up to 0.33dB. Using the synthesized artery contrasted CT, the F score of aneurysm detection achieved 0.58 at slice level and 0.85 at case level. Conclusion This study tries to address the problem of non-contrast to artery contrasted CT modality translation by employing a deep learning model with aorta awareness. The auxiliary tasks help the proposed model focus on aorta regions and synthesize results with clearer boundaries. Additionally, the synthesized artery contrasted CT shows potential in identifying slices with abdominal aortic aneurysm, and may provide an option for patients with contrast agent allergy.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34674136</pmid><doi>10.1007/s11548-021-02492-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7667-1666</orcidid><orcidid>https://orcid.org/0000-0002-8491-0698</orcidid><orcidid>https://orcid.org/0000-0002-0100-4797</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-6410
ispartof International journal for computer assisted radiology and surgery, 2022, Vol.17 (1), p.97-105
issn 1861-6410
1861-6429
language eng
recordid cdi_proquest_miscellaneous_2584437443
source MEDLINE; SpringerNature Journals
subjects Aorta
Aortic Aneurysm, Abdominal - diagnostic imaging
Aortic aneurysms
Arteries
Computed tomography
Computer Imaging
Computer Science
Contrast agents
Coronary vessels
Deep learning
Health Informatics
Humans
Image segmentation
Imaging
Medicine
Medicine & Public Health
Original Article
Pattern Recognition and Graphics
Radiology
Signal to noise ratio
Surgery
Synthesis
Tomography, X-Ray Computed
Vision
title Aorta-aware GAN for non-contrast to artery contrasted CT translation and its application to abdominal aortic aneurysm detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aorta-aware%20GAN%20for%20non-contrast%20to%20artery%20contrasted%20CT%20translation%20and%20its%20application%20to%20abdominal%20aortic%20aneurysm%20detection&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Hu,%20Tao&rft.date=2022&rft.volume=17&rft.issue=1&rft.spage=97&rft.epage=105&rft.pages=97-105&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-021-02492-0&rft_dat=%3Cproquest_cross%3E2617315566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617315566&rft_id=info:pmid/34674136&rfr_iscdi=true