Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis

The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2021-12, Vol.413 (30), p.7401-7410
Hauptverfasser: Fu, Qiuyue, Zhang, Yanjiao, Wang, Peng, Pi, Jiang, Qiu, Xun, Guo, Zhusheng, Huang, Ya, Zhao, Yi, Li, Shaoxin, Xu, Junfa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7410
container_issue 30
container_start_page 7401
container_title Analytical and bioanalytical chemistry
container_volume 413
creator Fu, Qiuyue
Zhang, Yanjiao
Wang, Peng
Pi, Jiang
Qiu, Xun
Guo, Zhusheng
Huang, Ya
Zhao, Yi
Li, Shaoxin
Xu, Junfa
description The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.
doi_str_mv 10.1007/s00216-021-03691-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584437178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684001668</galeid><sourcerecordid>A684001668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-4797260942fa7edc4c468e98089d1839296459ae5ed10a3b865da8cc2b2131b93</originalsourceid><addsrcrecordid>eNp9Uc1qFjEUHcRif_QFXEjAjZtp8zeZZFmKWqEgFF2HTHLna8p8yZhkFu2i-A6-oU9ixq-2WEQCN7nJOYebc5rmNcHHBOP-JGNMiWhraTETirS3z5oDIohsqejw84czp_vNYc7XGJNOEvGi2Wdc9EwpetDcXZrZO-QdhOJHb03xMaA4onIFKEH2uZhgYb1Zkg8m3aCSjC1oNuUqbiB4i4baQ_IGLdmHDXIAM5rApFC7n99_DCaDQ3kGW1LMNs6VYoKZbqr4y2ZvNFOGV_f7UfP1w_svZ-ftxeePn85OL1rLOS0t71VPBVacjqYHZ7nlQoKSWCpHJFNUCd4pAx04gg0bpOickdbSgRJGBsWOmnc73TnFbwvkorc-W5gmEyAuWdNOcs560ssKffsEeh2XVOetKIGpFIJK_ojamAm0D2NcbVlF9amQvFotxKp1_A9UXQ623sYAo6_3fxHojmCrVTnBqOfkt9V1TbBeQ9e70HUt-nfo-raS3txPvAxbcA-UPylXANsBcn0KG0iPX_qP7C8DkbjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602866284</pqid></control><display><type>article</type><title>Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Fu, Qiuyue ; Zhang, Yanjiao ; Wang, Peng ; Pi, Jiang ; Qiu, Xun ; Guo, Zhusheng ; Huang, Ya ; Zhao, Yi ; Li, Shaoxin ; Xu, Junfa</creator><creatorcontrib>Fu, Qiuyue ; Zhang, Yanjiao ; Wang, Peng ; Pi, Jiang ; Qiu, Xun ; Guo, Zhusheng ; Huang, Ya ; Zhao, Yi ; Li, Shaoxin ; Xu, Junfa</creatorcontrib><description>The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-021-03691-z</identifier><identifier>PMID: 34673992</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analysis ; Analytical Chemistry ; Anti-Bacterial Agents - pharmacology ; Anti-Bacterial Agents - therapeutic use ; Antibiotic resistance ; Antibiotics ; Artificial neural networks ; Bacteria ; Bacteria - classification ; Bacteria - drug effects ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Data processing ; Deep Learning ; Drug resistance in microorganisms ; Drug Resistance, Bacterial ; Food Science ; Humans ; Laboratory Medicine ; Machine learning ; Methods ; Microbial Sensitivity Tests ; Monitoring/Environmental Analysis ; Multidrug resistance ; Multivariate statistical analysis ; Nanoparticles ; Neural networks ; Principal components analysis ; Raman spectra ; Raman spectroscopy ; Research Paper ; Sensitivity ; Species Specificity ; Spectrum Analysis, Raman - methods ; Statistical analysis ; Substrates ; Urinary tract ; Urinary tract infections ; Urinary Tract Infections - drug therapy ; Urinary Tract Infections - microbiology ; Urogenital system</subject><ispartof>Analytical and bioanalytical chemistry, 2021-12, Vol.413 (30), p.7401-7410</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-4797260942fa7edc4c468e98089d1839296459ae5ed10a3b865da8cc2b2131b93</citedby><cites>FETCH-LOGICAL-c442t-4797260942fa7edc4c468e98089d1839296459ae5ed10a3b865da8cc2b2131b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-021-03691-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-021-03691-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34673992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Qiuyue</creatorcontrib><creatorcontrib>Zhang, Yanjiao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Pi, Jiang</creatorcontrib><creatorcontrib>Qiu, Xun</creatorcontrib><creatorcontrib>Guo, Zhusheng</creatorcontrib><creatorcontrib>Huang, Ya</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Li, Shaoxin</creatorcontrib><creatorcontrib>Xu, Junfa</creatorcontrib><title>Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Artificial neural networks</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Data processing</subject><subject>Deep Learning</subject><subject>Drug resistance in microorganisms</subject><subject>Drug Resistance, Bacterial</subject><subject>Food Science</subject><subject>Humans</subject><subject>Laboratory Medicine</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Microbial Sensitivity Tests</subject><subject>Monitoring/Environmental Analysis</subject><subject>Multidrug resistance</subject><subject>Multivariate statistical analysis</subject><subject>Nanoparticles</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Research Paper</subject><subject>Sensitivity</subject><subject>Species Specificity</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Statistical analysis</subject><subject>Substrates</subject><subject>Urinary tract</subject><subject>Urinary tract infections</subject><subject>Urinary Tract Infections - drug therapy</subject><subject>Urinary Tract Infections - microbiology</subject><subject>Urogenital system</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Uc1qFjEUHcRif_QFXEjAjZtp8zeZZFmKWqEgFF2HTHLna8p8yZhkFu2i-A6-oU9ixq-2WEQCN7nJOYebc5rmNcHHBOP-JGNMiWhraTETirS3z5oDIohsqejw84czp_vNYc7XGJNOEvGi2Wdc9EwpetDcXZrZO-QdhOJHb03xMaA4onIFKEH2uZhgYb1Zkg8m3aCSjC1oNuUqbiB4i4baQ_IGLdmHDXIAM5rApFC7n99_DCaDQ3kGW1LMNs6VYoKZbqr4y2ZvNFOGV_f7UfP1w_svZ-ftxeePn85OL1rLOS0t71VPBVacjqYHZ7nlQoKSWCpHJFNUCd4pAx04gg0bpOickdbSgRJGBsWOmnc73TnFbwvkorc-W5gmEyAuWdNOcs560ssKffsEeh2XVOetKIGpFIJK_ojamAm0D2NcbVlF9amQvFotxKp1_A9UXQ623sYAo6_3fxHojmCrVTnBqOfkt9V1TbBeQ9e70HUt-nfo-raS3txPvAxbcA-UPylXANsBcn0KG0iPX_qP7C8DkbjE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Fu, Qiuyue</creator><creator>Zhang, Yanjiao</creator><creator>Wang, Peng</creator><creator>Pi, Jiang</creator><creator>Qiu, Xun</creator><creator>Guo, Zhusheng</creator><creator>Huang, Ya</creator><creator>Zhao, Yi</creator><creator>Li, Shaoxin</creator><creator>Xu, Junfa</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20211201</creationdate><title>Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis</title><author>Fu, Qiuyue ; Zhang, Yanjiao ; Wang, Peng ; Pi, Jiang ; Qiu, Xun ; Guo, Zhusheng ; Huang, Ya ; Zhao, Yi ; Li, Shaoxin ; Xu, Junfa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-4797260942fa7edc4c468e98089d1839296459ae5ed10a3b865da8cc2b2131b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Artificial neural networks</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Data processing</topic><topic>Deep Learning</topic><topic>Drug resistance in microorganisms</topic><topic>Drug Resistance, Bacterial</topic><topic>Food Science</topic><topic>Humans</topic><topic>Laboratory Medicine</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Microbial Sensitivity Tests</topic><topic>Monitoring/Environmental Analysis</topic><topic>Multidrug resistance</topic><topic>Multivariate statistical analysis</topic><topic>Nanoparticles</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Research Paper</topic><topic>Sensitivity</topic><topic>Species Specificity</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Statistical analysis</topic><topic>Substrates</topic><topic>Urinary tract</topic><topic>Urinary tract infections</topic><topic>Urinary Tract Infections - drug therapy</topic><topic>Urinary Tract Infections - microbiology</topic><topic>Urogenital system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Qiuyue</creatorcontrib><creatorcontrib>Zhang, Yanjiao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Pi, Jiang</creatorcontrib><creatorcontrib>Qiu, Xun</creatorcontrib><creatorcontrib>Guo, Zhusheng</creatorcontrib><creatorcontrib>Huang, Ya</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Li, Shaoxin</creatorcontrib><creatorcontrib>Xu, Junfa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Qiuyue</au><au>Zhang, Yanjiao</au><au>Wang, Peng</au><au>Pi, Jiang</au><au>Qiu, Xun</au><au>Guo, Zhusheng</au><au>Huang, Ya</au><au>Zhao, Yi</au><au>Li, Shaoxin</au><au>Xu, Junfa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>413</volume><issue>30</issue><spage>7401</spage><epage>7410</epage><pages>7401-7410</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34673992</pmid><doi>10.1007/s00216-021-03691-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2021-12, Vol.413 (30), p.7401-7410
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_2584437178
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Algorithms
Analysis
Analytical Chemistry
Anti-Bacterial Agents - pharmacology
Anti-Bacterial Agents - therapeutic use
Antibiotic resistance
Antibiotics
Artificial neural networks
Bacteria
Bacteria - classification
Bacteria - drug effects
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Data processing
Deep Learning
Drug resistance in microorganisms
Drug Resistance, Bacterial
Food Science
Humans
Laboratory Medicine
Machine learning
Methods
Microbial Sensitivity Tests
Monitoring/Environmental Analysis
Multidrug resistance
Multivariate statistical analysis
Nanoparticles
Neural networks
Principal components analysis
Raman spectra
Raman spectroscopy
Research Paper
Sensitivity
Species Specificity
Spectrum Analysis, Raman - methods
Statistical analysis
Substrates
Urinary tract
Urinary tract infections
Urinary Tract Infections - drug therapy
Urinary Tract Infections - microbiology
Urogenital system
title Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20identification%20of%20the%20resistance%20of%20urinary%20tract%20pathogenic%20bacteria%20using%20deep%20learning%E2%80%93based%20spectroscopic%20analysis&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Fu,%20Qiuyue&rft.date=2021-12-01&rft.volume=413&rft.issue=30&rft.spage=7401&rft.epage=7410&rft.pages=7401-7410&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-021-03691-z&rft_dat=%3Cgale_proqu%3EA684001668%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602866284&rft_id=info:pmid/34673992&rft_galeid=A684001668&rfr_iscdi=true