Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis
The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract in...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2021-12, Vol.413 (30), p.7401-7410 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7410 |
---|---|
container_issue | 30 |
container_start_page | 7401 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 413 |
creator | Fu, Qiuyue Zhang, Yanjiao Wang, Peng Pi, Jiang Qiu, Xun Guo, Zhusheng Huang, Ya Zhao, Yi Li, Shaoxin Xu, Junfa |
description | The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity. |
doi_str_mv | 10.1007/s00216-021-03691-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584437178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684001668</galeid><sourcerecordid>A684001668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-4797260942fa7edc4c468e98089d1839296459ae5ed10a3b865da8cc2b2131b93</originalsourceid><addsrcrecordid>eNp9Uc1qFjEUHcRif_QFXEjAjZtp8zeZZFmKWqEgFF2HTHLna8p8yZhkFu2i-A6-oU9ixq-2WEQCN7nJOYebc5rmNcHHBOP-JGNMiWhraTETirS3z5oDIohsqejw84czp_vNYc7XGJNOEvGi2Wdc9EwpetDcXZrZO-QdhOJHb03xMaA4onIFKEH2uZhgYb1Zkg8m3aCSjC1oNuUqbiB4i4baQ_IGLdmHDXIAM5rApFC7n99_DCaDQ3kGW1LMNs6VYoKZbqr4y2ZvNFOGV_f7UfP1w_svZ-ftxeePn85OL1rLOS0t71VPBVacjqYHZ7nlQoKSWCpHJFNUCd4pAx04gg0bpOickdbSgRJGBsWOmnc73TnFbwvkorc-W5gmEyAuWdNOcs560ssKffsEeh2XVOetKIGpFIJK_ojamAm0D2NcbVlF9amQvFotxKp1_A9UXQ623sYAo6_3fxHojmCrVTnBqOfkt9V1TbBeQ9e70HUt-nfo-raS3txPvAxbcA-UPylXANsBcn0KG0iPX_qP7C8DkbjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602866284</pqid></control><display><type>article</type><title>Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Fu, Qiuyue ; Zhang, Yanjiao ; Wang, Peng ; Pi, Jiang ; Qiu, Xun ; Guo, Zhusheng ; Huang, Ya ; Zhao, Yi ; Li, Shaoxin ; Xu, Junfa</creator><creatorcontrib>Fu, Qiuyue ; Zhang, Yanjiao ; Wang, Peng ; Pi, Jiang ; Qiu, Xun ; Guo, Zhusheng ; Huang, Ya ; Zhao, Yi ; Li, Shaoxin ; Xu, Junfa</creatorcontrib><description>The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-021-03691-z</identifier><identifier>PMID: 34673992</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analysis ; Analytical Chemistry ; Anti-Bacterial Agents - pharmacology ; Anti-Bacterial Agents - therapeutic use ; Antibiotic resistance ; Antibiotics ; Artificial neural networks ; Bacteria ; Bacteria - classification ; Bacteria - drug effects ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Data processing ; Deep Learning ; Drug resistance in microorganisms ; Drug Resistance, Bacterial ; Food Science ; Humans ; Laboratory Medicine ; Machine learning ; Methods ; Microbial Sensitivity Tests ; Monitoring/Environmental Analysis ; Multidrug resistance ; Multivariate statistical analysis ; Nanoparticles ; Neural networks ; Principal components analysis ; Raman spectra ; Raman spectroscopy ; Research Paper ; Sensitivity ; Species Specificity ; Spectrum Analysis, Raman - methods ; Statistical analysis ; Substrates ; Urinary tract ; Urinary tract infections ; Urinary Tract Infections - drug therapy ; Urinary Tract Infections - microbiology ; Urogenital system</subject><ispartof>Analytical and bioanalytical chemistry, 2021-12, Vol.413 (30), p.7401-7410</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-4797260942fa7edc4c468e98089d1839296459ae5ed10a3b865da8cc2b2131b93</citedby><cites>FETCH-LOGICAL-c442t-4797260942fa7edc4c468e98089d1839296459ae5ed10a3b865da8cc2b2131b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-021-03691-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-021-03691-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34673992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Qiuyue</creatorcontrib><creatorcontrib>Zhang, Yanjiao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Pi, Jiang</creatorcontrib><creatorcontrib>Qiu, Xun</creatorcontrib><creatorcontrib>Guo, Zhusheng</creatorcontrib><creatorcontrib>Huang, Ya</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Li, Shaoxin</creatorcontrib><creatorcontrib>Xu, Junfa</creatorcontrib><title>Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Artificial neural networks</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Data processing</subject><subject>Deep Learning</subject><subject>Drug resistance in microorganisms</subject><subject>Drug Resistance, Bacterial</subject><subject>Food Science</subject><subject>Humans</subject><subject>Laboratory Medicine</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Microbial Sensitivity Tests</subject><subject>Monitoring/Environmental Analysis</subject><subject>Multidrug resistance</subject><subject>Multivariate statistical analysis</subject><subject>Nanoparticles</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Research Paper</subject><subject>Sensitivity</subject><subject>Species Specificity</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Statistical analysis</subject><subject>Substrates</subject><subject>Urinary tract</subject><subject>Urinary tract infections</subject><subject>Urinary Tract Infections - drug therapy</subject><subject>Urinary Tract Infections - microbiology</subject><subject>Urogenital system</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Uc1qFjEUHcRif_QFXEjAjZtp8zeZZFmKWqEgFF2HTHLna8p8yZhkFu2i-A6-oU9ixq-2WEQCN7nJOYebc5rmNcHHBOP-JGNMiWhraTETirS3z5oDIohsqejw84czp_vNYc7XGJNOEvGi2Wdc9EwpetDcXZrZO-QdhOJHb03xMaA4onIFKEH2uZhgYb1Zkg8m3aCSjC1oNuUqbiB4i4baQ_IGLdmHDXIAM5rApFC7n99_DCaDQ3kGW1LMNs6VYoKZbqr4y2ZvNFOGV_f7UfP1w_svZ-ftxeePn85OL1rLOS0t71VPBVacjqYHZ7nlQoKSWCpHJFNUCd4pAx04gg0bpOickdbSgRJGBsWOmnc73TnFbwvkorc-W5gmEyAuWdNOcs560ssKffsEeh2XVOetKIGpFIJK_ojamAm0D2NcbVlF9amQvFotxKp1_A9UXQ623sYAo6_3fxHojmCrVTnBqOfkt9V1TbBeQ9e70HUt-nfo-raS3txPvAxbcA-UPylXANsBcn0KG0iPX_qP7C8DkbjE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Fu, Qiuyue</creator><creator>Zhang, Yanjiao</creator><creator>Wang, Peng</creator><creator>Pi, Jiang</creator><creator>Qiu, Xun</creator><creator>Guo, Zhusheng</creator><creator>Huang, Ya</creator><creator>Zhao, Yi</creator><creator>Li, Shaoxin</creator><creator>Xu, Junfa</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20211201</creationdate><title>Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis</title><author>Fu, Qiuyue ; Zhang, Yanjiao ; Wang, Peng ; Pi, Jiang ; Qiu, Xun ; Guo, Zhusheng ; Huang, Ya ; Zhao, Yi ; Li, Shaoxin ; Xu, Junfa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-4797260942fa7edc4c468e98089d1839296459ae5ed10a3b865da8cc2b2131b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Artificial neural networks</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Data processing</topic><topic>Deep Learning</topic><topic>Drug resistance in microorganisms</topic><topic>Drug Resistance, Bacterial</topic><topic>Food Science</topic><topic>Humans</topic><topic>Laboratory Medicine</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Microbial Sensitivity Tests</topic><topic>Monitoring/Environmental Analysis</topic><topic>Multidrug resistance</topic><topic>Multivariate statistical analysis</topic><topic>Nanoparticles</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Research Paper</topic><topic>Sensitivity</topic><topic>Species Specificity</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Statistical analysis</topic><topic>Substrates</topic><topic>Urinary tract</topic><topic>Urinary tract infections</topic><topic>Urinary Tract Infections - drug therapy</topic><topic>Urinary Tract Infections - microbiology</topic><topic>Urogenital system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Qiuyue</creatorcontrib><creatorcontrib>Zhang, Yanjiao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Pi, Jiang</creatorcontrib><creatorcontrib>Qiu, Xun</creatorcontrib><creatorcontrib>Guo, Zhusheng</creatorcontrib><creatorcontrib>Huang, Ya</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Li, Shaoxin</creatorcontrib><creatorcontrib>Xu, Junfa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Qiuyue</au><au>Zhang, Yanjiao</au><au>Wang, Peng</au><au>Pi, Jiang</au><au>Qiu, Xun</au><au>Guo, Zhusheng</au><au>Huang, Ya</au><au>Zhao, Yi</au><au>Li, Shaoxin</au><au>Xu, Junfa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>413</volume><issue>30</issue><spage>7401</spage><epage>7410</epage><pages>7401-7410</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34673992</pmid><doi>10.1007/s00216-021-03691-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2021-12, Vol.413 (30), p.7401-7410 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2584437178 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Algorithms Analysis Analytical Chemistry Anti-Bacterial Agents - pharmacology Anti-Bacterial Agents - therapeutic use Antibiotic resistance Antibiotics Artificial neural networks Bacteria Bacteria - classification Bacteria - drug effects Biochemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Data processing Deep Learning Drug resistance in microorganisms Drug Resistance, Bacterial Food Science Humans Laboratory Medicine Machine learning Methods Microbial Sensitivity Tests Monitoring/Environmental Analysis Multidrug resistance Multivariate statistical analysis Nanoparticles Neural networks Principal components analysis Raman spectra Raman spectroscopy Research Paper Sensitivity Species Specificity Spectrum Analysis, Raman - methods Statistical analysis Substrates Urinary tract Urinary tract infections Urinary Tract Infections - drug therapy Urinary Tract Infections - microbiology Urogenital system |
title | Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20identification%20of%20the%20resistance%20of%20urinary%20tract%20pathogenic%20bacteria%20using%20deep%20learning%E2%80%93based%20spectroscopic%20analysis&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Fu,%20Qiuyue&rft.date=2021-12-01&rft.volume=413&rft.issue=30&rft.spage=7401&rft.epage=7410&rft.pages=7401-7410&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-021-03691-z&rft_dat=%3Cgale_proqu%3EA684001668%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602866284&rft_id=info:pmid/34673992&rft_galeid=A684001668&rfr_iscdi=true |