Radiolytic Destruction of Uracil in Interstellar and Solar System Ices
Uracil is one of the four RNA nucleobases and a component of meteoritic organics. If delivered to the early Earth, uracil could have been involved in the origins of the first RNA-based life, and so this molecule could be a biomarker on other worlds. Therefore, it is important to understand uracil...
Gespeichert in:
Veröffentlicht in: | Astrobiology 2022-03, Vol.22 (3), p.233-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uracil is one of the four RNA nucleobases and a component of meteoritic organics. If delivered to the early Earth, uracil could have been involved in the origins of the first RNA-based life, and so this molecule could be a biomarker on other worlds. Therefore, it is important to understand uracil's survival to ionizing radiation in extraterrestrial environments. Here we present a study of the radiolytic destruction kinetics of uracil and mixtures of uracil diluted in H
O or CO
ice. All samples were irradiated by protons with an energy of 0.9 MeV, and experiments were performed at 20 and 150 K to determine destruction rate constants at temperatures relevant to interstellar and Solar System environments. We show that uracil is destroyed much faster when H
O ice or CO
ice is present than when these two ices are absent. Moreover, destruction is faster for CO
-dominated ices than for H
O-dominated ones and, to a lesser extent, at 150 K compared with 20 K. Extrapolation of our laboratory results to astronomical timescales shows that uracil will be preserved in ices with half-lives of up to ∼10
years on cold planetary bodies such as comets or Pluto. An important implication of our results is that for extraterrestrial environments, the application of laboratory data measured for the radiation-induced destruction of pure (neat) uracil samples can greatly underestimate the molecule's rate of destruction and significantly overestimate its lifetime, which can lead to errors of over 1000%. |
---|---|
ISSN: | 1531-1074 1557-8070 |
DOI: | 10.1089/ast.2021.0053 |