Interfacial Electrostatic‐Interaction‐Enhanced Photomultiplication for Ultrahigh External Quantum Efficiency of Organic Photodiodes

A photomultiplication‐type organic photodiode (PM‐OPD), where an electric double layer (EDL) is strategically embedded, is demonstrated, with an exceptionally high external quantum efficiency (EQE) of 2 210 000%, responsivity of 11 200 A W−1, specific detectivity of 2.11 × 1014 Jones, and gain–bandw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-12, Vol.33 (52), p.e2104689-n/a
Hauptverfasser: Kim, Juhee, Kang, Mingyun, Lee, Sangjun, So, Chan, Chung, Dae Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page e2104689
container_title Advanced materials (Weinheim)
container_volume 33
creator Kim, Juhee
Kang, Mingyun
Lee, Sangjun
So, Chan
Chung, Dae Sung
description A photomultiplication‐type organic photodiode (PM‐OPD), where an electric double layer (EDL) is strategically embedded, is demonstrated, with an exceptionally high external quantum efficiency (EQE) of 2 210 000%, responsivity of 11 200 A W−1, specific detectivity of 2.11 × 1014 Jones, and gain–bandwidth product of 1.92 × 107 Hz, as well as high reproducibility. A polymer electrolyte, poly(9,9‐bis(3′‐(N,N‐dimethyl)‐N‐ethylammoinium‐propyl‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene))dibromide is employed as a work‐function‐modifying layer of indium tin oxide (ITO) to construct an EDL‐embedded Schottky junction with p‐type polymer semiconductor, poly(3‐hexylthiophene‐diyl), resulting in not only advantageous tuning of the work function of ITO but also an enhancement of the electron‐trapping efficiency due to electrostatic interaction between exposed cations and trapped electrons within isolated acceptor domains. The effects of the EDL on the energetics of the trapped electron states and thus on the gain generation mechanism are confirmed by numerical simulations based on the drift–diffusion approximation of charge carriers. The feasibility of the fabricated high‐EQE PM‐OPD especially for weak light detection is demonstrated via a pixelated prototype image sensor. It is believed that this new OPD platform opens up the possibility for the ultrahigh‐sensitivity organic image sensors, while maintaining the advantageous properties of organics. A strategy to boost the external quantum efficiency (EQE) of photomultiplication‐type organic photodiodes (OPDs) is suggested by stabilizing trapped electron states within the active layer via electrostatic interactions. By introducing an ionic electrolyte interfacial layer and by the resulting built‐in electrostatic interaction, an ultrahigh EQE (>2 000 000%), responsivity (>10 000 A W−1), and visible specific detectivity (>1014 Jones) for OPDs is reported.
doi_str_mv 10.1002/adma.202104689
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584433212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584433212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-4bcd299a17fbc54dc17e5fa6b4829b0b97aa161eebfa2f0f482e6352cfc09da53</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1URLeFK0cUqRcuWWzHceLjqg20UlFBoudo4thdV469tR3B3rhx5Rn7JPWypUi9cLLG880nzfwIvSV4STCmH2CcYEkxJZjxVrxAC1JTUjIs6gO0wKKqS8FZe4iOYrzFGAuO-St0WDHeNG3bLNCvC5dU0CAN2KKzSqbgY4Jk5P3P3396IJPxLledW4OTaiy-rH3y02yT2VgjYdcutA_FtU0B1uZmXXQ_8qDLxq8zuDRPRae1kUY5uS28Lq7CDTgj96LR-FHF1-ilBhvVm8f3GF1_7L6dnpeXV58uTleXpWSkEiUb5EiFANLoQdZslKRRtQY-sJaKAQ-iASCcKDVooBrr_K14VVOpJRYj1NUxer_3boK_m1VM_WSiVNaCU36OPa1bxqqKEprRk2forZ93W2WKE0ZJI0STqeWekvlwMSjdb4KZIGx7gvtdRP0uov4pojzw7lE7D5Man_C_mWRA7IHvxqrtf3T96uzz6p_8ARxnoxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614217997</pqid></control><display><type>article</type><title>Interfacial Electrostatic‐Interaction‐Enhanced Photomultiplication for Ultrahigh External Quantum Efficiency of Organic Photodiodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Juhee ; Kang, Mingyun ; Lee, Sangjun ; So, Chan ; Chung, Dae Sung</creator><creatorcontrib>Kim, Juhee ; Kang, Mingyun ; Lee, Sangjun ; So, Chan ; Chung, Dae Sung</creatorcontrib><description>A photomultiplication‐type organic photodiode (PM‐OPD), where an electric double layer (EDL) is strategically embedded, is demonstrated, with an exceptionally high external quantum efficiency (EQE) of 2 210 000%, responsivity of 11 200 A W−1, specific detectivity of 2.11 × 1014 Jones, and gain–bandwidth product of 1.92 × 107 Hz, as well as high reproducibility. A polymer electrolyte, poly(9,9‐bis(3′‐(N,N‐dimethyl)‐N‐ethylammoinium‐propyl‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene))dibromide is employed as a work‐function‐modifying layer of indium tin oxide (ITO) to construct an EDL‐embedded Schottky junction with p‐type polymer semiconductor, poly(3‐hexylthiophene‐diyl), resulting in not only advantageous tuning of the work function of ITO but also an enhancement of the electron‐trapping efficiency due to electrostatic interaction between exposed cations and trapped electrons within isolated acceptor domains. The effects of the EDL on the energetics of the trapped electron states and thus on the gain generation mechanism are confirmed by numerical simulations based on the drift–diffusion approximation of charge carriers. The feasibility of the fabricated high‐EQE PM‐OPD especially for weak light detection is demonstrated via a pixelated prototype image sensor. It is believed that this new OPD platform opens up the possibility for the ultrahigh‐sensitivity organic image sensors, while maintaining the advantageous properties of organics. A strategy to boost the external quantum efficiency (EQE) of photomultiplication‐type organic photodiodes (OPDs) is suggested by stabilizing trapped electron states within the active layer via electrostatic interactions. By introducing an ionic electrolyte interfacial layer and by the resulting built‐in electrostatic interaction, an ultrahigh EQE (&gt;2 000 000%), responsivity (&gt;10 000 A W−1), and visible specific detectivity (&gt;1014 Jones) for OPDs is reported.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202104689</identifier><identifier>PMID: 34677887</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Current carriers ; Efficiency ; Electric double layer ; Electron states ; electrostatic interactions ; high external quantum efficiency ; Indium tin oxides ; Materials science ; organic photodiodes ; Photodiodes ; photomultiplication ; Polymers ; Quantum efficiency ; Work functions</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2104689-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-4bcd299a17fbc54dc17e5fa6b4829b0b97aa161eebfa2f0f482e6352cfc09da53</citedby><cites>FETCH-LOGICAL-c4139-4bcd299a17fbc54dc17e5fa6b4829b0b97aa161eebfa2f0f482e6352cfc09da53</cites><orcidid>0000-0003-1313-8298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202104689$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202104689$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34677887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Juhee</creatorcontrib><creatorcontrib>Kang, Mingyun</creatorcontrib><creatorcontrib>Lee, Sangjun</creatorcontrib><creatorcontrib>So, Chan</creatorcontrib><creatorcontrib>Chung, Dae Sung</creatorcontrib><title>Interfacial Electrostatic‐Interaction‐Enhanced Photomultiplication for Ultrahigh External Quantum Efficiency of Organic Photodiodes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>A photomultiplication‐type organic photodiode (PM‐OPD), where an electric double layer (EDL) is strategically embedded, is demonstrated, with an exceptionally high external quantum efficiency (EQE) of 2 210 000%, responsivity of 11 200 A W−1, specific detectivity of 2.11 × 1014 Jones, and gain–bandwidth product of 1.92 × 107 Hz, as well as high reproducibility. A polymer electrolyte, poly(9,9‐bis(3′‐(N,N‐dimethyl)‐N‐ethylammoinium‐propyl‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene))dibromide is employed as a work‐function‐modifying layer of indium tin oxide (ITO) to construct an EDL‐embedded Schottky junction with p‐type polymer semiconductor, poly(3‐hexylthiophene‐diyl), resulting in not only advantageous tuning of the work function of ITO but also an enhancement of the electron‐trapping efficiency due to electrostatic interaction between exposed cations and trapped electrons within isolated acceptor domains. The effects of the EDL on the energetics of the trapped electron states and thus on the gain generation mechanism are confirmed by numerical simulations based on the drift–diffusion approximation of charge carriers. The feasibility of the fabricated high‐EQE PM‐OPD especially for weak light detection is demonstrated via a pixelated prototype image sensor. It is believed that this new OPD platform opens up the possibility for the ultrahigh‐sensitivity organic image sensors, while maintaining the advantageous properties of organics. A strategy to boost the external quantum efficiency (EQE) of photomultiplication‐type organic photodiodes (OPDs) is suggested by stabilizing trapped electron states within the active layer via electrostatic interactions. By introducing an ionic electrolyte interfacial layer and by the resulting built‐in electrostatic interaction, an ultrahigh EQE (&gt;2 000 000%), responsivity (&gt;10 000 A W−1), and visible specific detectivity (&gt;1014 Jones) for OPDs is reported.</description><subject>Current carriers</subject><subject>Efficiency</subject><subject>Electric double layer</subject><subject>Electron states</subject><subject>electrostatic interactions</subject><subject>high external quantum efficiency</subject><subject>Indium tin oxides</subject><subject>Materials science</subject><subject>organic photodiodes</subject><subject>Photodiodes</subject><subject>photomultiplication</subject><subject>Polymers</subject><subject>Quantum efficiency</subject><subject>Work functions</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1URLeFK0cUqRcuWWzHceLjqg20UlFBoudo4thdV469tR3B3rhx5Rn7JPWypUi9cLLG880nzfwIvSV4STCmH2CcYEkxJZjxVrxAC1JTUjIs6gO0wKKqS8FZe4iOYrzFGAuO-St0WDHeNG3bLNCvC5dU0CAN2KKzSqbgY4Jk5P3P3396IJPxLledW4OTaiy-rH3y02yT2VgjYdcutA_FtU0B1uZmXXQ_8qDLxq8zuDRPRae1kUY5uS28Lq7CDTgj96LR-FHF1-ilBhvVm8f3GF1_7L6dnpeXV58uTleXpWSkEiUb5EiFANLoQdZslKRRtQY-sJaKAQ-iASCcKDVooBrr_K14VVOpJRYj1NUxer_3boK_m1VM_WSiVNaCU36OPa1bxqqKEprRk2forZ93W2WKE0ZJI0STqeWekvlwMSjdb4KZIGx7gvtdRP0uov4pojzw7lE7D5Man_C_mWRA7IHvxqrtf3T96uzz6p_8ARxnoxk</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kim, Juhee</creator><creator>Kang, Mingyun</creator><creator>Lee, Sangjun</creator><creator>So, Chan</creator><creator>Chung, Dae Sung</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1313-8298</orcidid></search><sort><creationdate>20211201</creationdate><title>Interfacial Electrostatic‐Interaction‐Enhanced Photomultiplication for Ultrahigh External Quantum Efficiency of Organic Photodiodes</title><author>Kim, Juhee ; Kang, Mingyun ; Lee, Sangjun ; So, Chan ; Chung, Dae Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-4bcd299a17fbc54dc17e5fa6b4829b0b97aa161eebfa2f0f482e6352cfc09da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Current carriers</topic><topic>Efficiency</topic><topic>Electric double layer</topic><topic>Electron states</topic><topic>electrostatic interactions</topic><topic>high external quantum efficiency</topic><topic>Indium tin oxides</topic><topic>Materials science</topic><topic>organic photodiodes</topic><topic>Photodiodes</topic><topic>photomultiplication</topic><topic>Polymers</topic><topic>Quantum efficiency</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Juhee</creatorcontrib><creatorcontrib>Kang, Mingyun</creatorcontrib><creatorcontrib>Lee, Sangjun</creatorcontrib><creatorcontrib>So, Chan</creatorcontrib><creatorcontrib>Chung, Dae Sung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Juhee</au><au>Kang, Mingyun</au><au>Lee, Sangjun</au><au>So, Chan</au><au>Chung, Dae Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Electrostatic‐Interaction‐Enhanced Photomultiplication for Ultrahigh External Quantum Efficiency of Organic Photodiodes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>52</issue><spage>e2104689</spage><epage>n/a</epage><pages>e2104689-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A photomultiplication‐type organic photodiode (PM‐OPD), where an electric double layer (EDL) is strategically embedded, is demonstrated, with an exceptionally high external quantum efficiency (EQE) of 2 210 000%, responsivity of 11 200 A W−1, specific detectivity of 2.11 × 1014 Jones, and gain–bandwidth product of 1.92 × 107 Hz, as well as high reproducibility. A polymer electrolyte, poly(9,9‐bis(3′‐(N,N‐dimethyl)‐N‐ethylammoinium‐propyl‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene))dibromide is employed as a work‐function‐modifying layer of indium tin oxide (ITO) to construct an EDL‐embedded Schottky junction with p‐type polymer semiconductor, poly(3‐hexylthiophene‐diyl), resulting in not only advantageous tuning of the work function of ITO but also an enhancement of the electron‐trapping efficiency due to electrostatic interaction between exposed cations and trapped electrons within isolated acceptor domains. The effects of the EDL on the energetics of the trapped electron states and thus on the gain generation mechanism are confirmed by numerical simulations based on the drift–diffusion approximation of charge carriers. The feasibility of the fabricated high‐EQE PM‐OPD especially for weak light detection is demonstrated via a pixelated prototype image sensor. It is believed that this new OPD platform opens up the possibility for the ultrahigh‐sensitivity organic image sensors, while maintaining the advantageous properties of organics. A strategy to boost the external quantum efficiency (EQE) of photomultiplication‐type organic photodiodes (OPDs) is suggested by stabilizing trapped electron states within the active layer via electrostatic interactions. By introducing an ionic electrolyte interfacial layer and by the resulting built‐in electrostatic interaction, an ultrahigh EQE (&gt;2 000 000%), responsivity (&gt;10 000 A W−1), and visible specific detectivity (&gt;1014 Jones) for OPDs is reported.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34677887</pmid><doi>10.1002/adma.202104689</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1313-8298</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2104689-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2584433212
source Wiley Online Library Journals Frontfile Complete
subjects Current carriers
Efficiency
Electric double layer
Electron states
electrostatic interactions
high external quantum efficiency
Indium tin oxides
Materials science
organic photodiodes
Photodiodes
photomultiplication
Polymers
Quantum efficiency
Work functions
title Interfacial Electrostatic‐Interaction‐Enhanced Photomultiplication for Ultrahigh External Quantum Efficiency of Organic Photodiodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Electrostatic%E2%80%90Interaction%E2%80%90Enhanced%20Photomultiplication%20for%20Ultrahigh%20External%20Quantum%20Efficiency%20of%20Organic%20Photodiodes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kim,%20Juhee&rft.date=2021-12-01&rft.volume=33&rft.issue=52&rft.spage=e2104689&rft.epage=n/a&rft.pages=e2104689-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202104689&rft_dat=%3Cproquest_cross%3E2584433212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614217997&rft_id=info:pmid/34677887&rfr_iscdi=true