Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window
The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of for...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-11, Vol.15 (11), p.17757-17768 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17768 |
---|---|
container_issue | 11 |
container_start_page | 17757 |
container_title | ACS nano |
container_volume | 15 |
creator | Liu, Shao-Qing Shahini, Ehsan Gao, Min-Rui Gong, Lu Sui, Peng-Fei Tang, Tian Zeng, Hongbo Luo, Jing-Li |
description | The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of formate, the existing catalysts for CER fall short of expectation in maintaining the high formate selectivity and activity over a wide potential window. Through this study, we report that Bi2O3 nanosheets (NSs) grown on carbon nanofiber (CNF) with inherent hydrophobicity achieve a peak formate current density of 102.1 mA cm–2 and high formate Faradaic efficiency of >93% over a very wide potential window of 1000 mV. To the best of our knowledge, this outperforms all the relevant achievements reported so far. In addition, the Bi2O3 NSs on CNF demonstrate a good antiflooding capability when operating in a flow cell system and can deliver a current density of 300 mA cm–2. Molecular dynamics simulations indicate that the hydrophobic carbon surface can repel water molecules to form a robust solid–liquid–gas triple-phase boundary and a concentrated CO2 layer; both can boost CER activity with the local high concentration of CO2 and through inhibiting the hydrogen evolution reaction (HER) by reducing proton contacts. This water-repelling effect also increases the local pH at the catalyst surface, thus inhibiting HER further. More significantly, the concept and methodology of this hydrophobic engineering could be broadly applicable to other formate-producing materials from CER. |
doi_str_mv | 10.1021/acsnano.1c05737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584432317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584432317</sourcerecordid><originalsourceid>FETCH-LOGICAL-a154t-a7c0b734e7244b3f3749792d815e198220a40a1561da5034710fd53c96c9d4703</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYsoOKfPvuZRkM78a9M-apnbYLg9KPpW0iS1GV0yk5Sx7-CHNmPDp3Mu93cPl5Mk9whOEMToiQtvuLETJGDGCLtIRqgkeQqL_Ovy32foOrnxfgMjU7B8lPy-aLwi4C1e-k6p4MHM2b0B1oCKuybKcdXqRjmw16EDC9Mpp0wA84N0dtfZRgsdDqC1Dsz1d5eulYt-y41QoFphMO2VCM46JQcRdAzUBnDwqaUCaxtikuZ9HI20-9vkquW9V3dnHScfr9P3ap4uV7NF9bxMOcpoSDkTsGGEKoYpbUhLGC1ZiWWBMoXKAmPIKYxojiTPIKEMwVZmRJS5KCVlkIyTh1PuztmfQflQb7UXqu-5UXbwNc4KSgkmiEX08YTGeuuNHZyJj9UI1sfO63Pn9blz8gclAHaa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584432317</pqid></control><display><type>article</type><title>Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window</title><source>American Chemical Society Web Editions</source><creator>Liu, Shao-Qing ; Shahini, Ehsan ; Gao, Min-Rui ; Gong, Lu ; Sui, Peng-Fei ; Tang, Tian ; Zeng, Hongbo ; Luo, Jing-Li</creator><creatorcontrib>Liu, Shao-Qing ; Shahini, Ehsan ; Gao, Min-Rui ; Gong, Lu ; Sui, Peng-Fei ; Tang, Tian ; Zeng, Hongbo ; Luo, Jing-Li</creatorcontrib><description>The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of formate, the existing catalysts for CER fall short of expectation in maintaining the high formate selectivity and activity over a wide potential window. Through this study, we report that Bi2O3 nanosheets (NSs) grown on carbon nanofiber (CNF) with inherent hydrophobicity achieve a peak formate current density of 102.1 mA cm–2 and high formate Faradaic efficiency of >93% over a very wide potential window of 1000 mV. To the best of our knowledge, this outperforms all the relevant achievements reported so far. In addition, the Bi2O3 NSs on CNF demonstrate a good antiflooding capability when operating in a flow cell system and can deliver a current density of 300 mA cm–2. Molecular dynamics simulations indicate that the hydrophobic carbon surface can repel water molecules to form a robust solid–liquid–gas triple-phase boundary and a concentrated CO2 layer; both can boost CER activity with the local high concentration of CO2 and through inhibiting the hydrogen evolution reaction (HER) by reducing proton contacts. This water-repelling effect also increases the local pH at the catalyst surface, thus inhibiting HER further. More significantly, the concept and methodology of this hydrophobic engineering could be broadly applicable to other formate-producing materials from CER.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c05737</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2021-11, Vol.15 (11), p.17757-17768</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1432-5979 ; 0000-0002-2465-7280 ; 0000-0001-5153-6516 ; 0000-0003-0586-7546 ; 0000-0003-2696-2059 ; 0000-0002-2387-3571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c05737$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c05737$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Liu, Shao-Qing</creatorcontrib><creatorcontrib>Shahini, Ehsan</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><creatorcontrib>Gong, Lu</creatorcontrib><creatorcontrib>Sui, Peng-Fei</creatorcontrib><creatorcontrib>Tang, Tian</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><creatorcontrib>Luo, Jing-Li</creatorcontrib><title>Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of formate, the existing catalysts for CER fall short of expectation in maintaining the high formate selectivity and activity over a wide potential window. Through this study, we report that Bi2O3 nanosheets (NSs) grown on carbon nanofiber (CNF) with inherent hydrophobicity achieve a peak formate current density of 102.1 mA cm–2 and high formate Faradaic efficiency of >93% over a very wide potential window of 1000 mV. To the best of our knowledge, this outperforms all the relevant achievements reported so far. In addition, the Bi2O3 NSs on CNF demonstrate a good antiflooding capability when operating in a flow cell system and can deliver a current density of 300 mA cm–2. Molecular dynamics simulations indicate that the hydrophobic carbon surface can repel water molecules to form a robust solid–liquid–gas triple-phase boundary and a concentrated CO2 layer; both can boost CER activity with the local high concentration of CO2 and through inhibiting the hydrogen evolution reaction (HER) by reducing proton contacts. This water-repelling effect also increases the local pH at the catalyst surface, thus inhibiting HER further. More significantly, the concept and methodology of this hydrophobic engineering could be broadly applicable to other formate-producing materials from CER.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYsoOKfPvuZRkM78a9M-apnbYLg9KPpW0iS1GV0yk5Sx7-CHNmPDp3Mu93cPl5Mk9whOEMToiQtvuLETJGDGCLtIRqgkeQqL_Ovy32foOrnxfgMjU7B8lPy-aLwi4C1e-k6p4MHM2b0B1oCKuybKcdXqRjmw16EDC9Mpp0wA84N0dtfZRgsdDqC1Dsz1d5eulYt-y41QoFphMO2VCM46JQcRdAzUBnDwqaUCaxtikuZ9HI20-9vkquW9V3dnHScfr9P3ap4uV7NF9bxMOcpoSDkTsGGEKoYpbUhLGC1ZiWWBMoXKAmPIKYxojiTPIKEMwVZmRJS5KCVlkIyTh1PuztmfQflQb7UXqu-5UXbwNc4KSgkmiEX08YTGeuuNHZyJj9UI1sfO63Pn9blz8gclAHaa</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Liu, Shao-Qing</creator><creator>Shahini, Ehsan</creator><creator>Gao, Min-Rui</creator><creator>Gong, Lu</creator><creator>Sui, Peng-Fei</creator><creator>Tang, Tian</creator><creator>Zeng, Hongbo</creator><creator>Luo, Jing-Li</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1432-5979</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid><orcidid>https://orcid.org/0000-0001-5153-6516</orcidid><orcidid>https://orcid.org/0000-0003-0586-7546</orcidid><orcidid>https://orcid.org/0000-0003-2696-2059</orcidid><orcidid>https://orcid.org/0000-0002-2387-3571</orcidid></search><sort><creationdate>20211123</creationdate><title>Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window</title><author>Liu, Shao-Qing ; Shahini, Ehsan ; Gao, Min-Rui ; Gong, Lu ; Sui, Peng-Fei ; Tang, Tian ; Zeng, Hongbo ; Luo, Jing-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a154t-a7c0b734e7244b3f3749792d815e198220a40a1561da5034710fd53c96c9d4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shao-Qing</creatorcontrib><creatorcontrib>Shahini, Ehsan</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><creatorcontrib>Gong, Lu</creatorcontrib><creatorcontrib>Sui, Peng-Fei</creatorcontrib><creatorcontrib>Tang, Tian</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><creatorcontrib>Luo, Jing-Li</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shao-Qing</au><au>Shahini, Ehsan</au><au>Gao, Min-Rui</au><au>Gong, Lu</au><au>Sui, Peng-Fei</au><au>Tang, Tian</au><au>Zeng, Hongbo</au><au>Luo, Jing-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-11-23</date><risdate>2021</risdate><volume>15</volume><issue>11</issue><spage>17757</spage><epage>17768</epage><pages>17757-17768</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of formate, the existing catalysts for CER fall short of expectation in maintaining the high formate selectivity and activity over a wide potential window. Through this study, we report that Bi2O3 nanosheets (NSs) grown on carbon nanofiber (CNF) with inherent hydrophobicity achieve a peak formate current density of 102.1 mA cm–2 and high formate Faradaic efficiency of >93% over a very wide potential window of 1000 mV. To the best of our knowledge, this outperforms all the relevant achievements reported so far. In addition, the Bi2O3 NSs on CNF demonstrate a good antiflooding capability when operating in a flow cell system and can deliver a current density of 300 mA cm–2. Molecular dynamics simulations indicate that the hydrophobic carbon surface can repel water molecules to form a robust solid–liquid–gas triple-phase boundary and a concentrated CO2 layer; both can boost CER activity with the local high concentration of CO2 and through inhibiting the hydrogen evolution reaction (HER) by reducing proton contacts. This water-repelling effect also increases the local pH at the catalyst surface, thus inhibiting HER further. More significantly, the concept and methodology of this hydrophobic engineering could be broadly applicable to other formate-producing materials from CER.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.1c05737</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1432-5979</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid><orcidid>https://orcid.org/0000-0001-5153-6516</orcidid><orcidid>https://orcid.org/0000-0003-0586-7546</orcidid><orcidid>https://orcid.org/0000-0003-2696-2059</orcidid><orcidid>https://orcid.org/0000-0002-2387-3571</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-11, Vol.15 (11), p.17757-17768 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2584432317 |
source | American Chemical Society Web Editions |
title | Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi2O3%20Nanosheets%20Grown%20on%20Carbon%20Nanofiber%20with%20Inherent%20Hydrophobicity%20for%20High-Performance%20CO2%20Electroreduction%20in%20a%20Wide%20Potential%20Window&rft.jtitle=ACS%20nano&rft.au=Liu,%20Shao-Qing&rft.date=2021-11-23&rft.volume=15&rft.issue=11&rft.spage=17757&rft.epage=17768&rft.pages=17757-17768&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c05737&rft_dat=%3Cproquest_acs_j%3E2584432317%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584432317&rft_id=info:pmid/&rfr_iscdi=true |