Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window

The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-11, Vol.15 (11), p.17757-17768
Hauptverfasser: Liu, Shao-Qing, Shahini, Ehsan, Gao, Min-Rui, Gong, Lu, Sui, Peng-Fei, Tang, Tian, Zeng, Hongbo, Luo, Jing-Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17768
container_issue 11
container_start_page 17757
container_title ACS nano
container_volume 15
creator Liu, Shao-Qing
Shahini, Ehsan
Gao, Min-Rui
Gong, Lu
Sui, Peng-Fei
Tang, Tian
Zeng, Hongbo
Luo, Jing-Li
description The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of formate, the existing catalysts for CER fall short of expectation in maintaining the high formate selectivity and activity over a wide potential window. Through this study, we report that Bi2O3 nanosheets (NSs) grown on carbon nanofiber (CNF) with inherent hydrophobicity achieve a peak formate current density of 102.1 mA cm–2 and high formate Faradaic efficiency of >93% over a very wide potential window of 1000 mV. To the best of our knowledge, this outperforms all the relevant achievements reported so far. In addition, the Bi2O3 NSs on CNF demonstrate a good antiflooding capability when operating in a flow cell system and can deliver a current density of 300 mA cm–2. Molecular dynamics simulations indicate that the hydrophobic carbon surface can repel water molecules to form a robust solid–liquid–gas triple-phase boundary and a concentrated CO2 layer; both can boost CER activity with the local high concentration of CO2 and through inhibiting the hydrogen evolution reaction (HER) by reducing proton contacts. This water-repelling effect also increases the local pH at the catalyst surface, thus inhibiting HER further. More significantly, the concept and methodology of this hydrophobic engineering could be broadly applicable to other formate-producing materials from CER.
doi_str_mv 10.1021/acsnano.1c05737
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584432317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584432317</sourcerecordid><originalsourceid>FETCH-LOGICAL-a154t-a7c0b734e7244b3f3749792d815e198220a40a1561da5034710fd53c96c9d4703</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYsoOKfPvuZRkM78a9M-apnbYLg9KPpW0iS1GV0yk5Sx7-CHNmPDp3Mu93cPl5Mk9whOEMToiQtvuLETJGDGCLtIRqgkeQqL_Ovy32foOrnxfgMjU7B8lPy-aLwi4C1e-k6p4MHM2b0B1oCKuybKcdXqRjmw16EDC9Mpp0wA84N0dtfZRgsdDqC1Dsz1d5eulYt-y41QoFphMO2VCM46JQcRdAzUBnDwqaUCaxtikuZ9HI20-9vkquW9V3dnHScfr9P3ap4uV7NF9bxMOcpoSDkTsGGEKoYpbUhLGC1ZiWWBMoXKAmPIKYxojiTPIKEMwVZmRJS5KCVlkIyTh1PuztmfQflQb7UXqu-5UXbwNc4KSgkmiEX08YTGeuuNHZyJj9UI1sfO63Pn9blz8gclAHaa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584432317</pqid></control><display><type>article</type><title>Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window</title><source>American Chemical Society Web Editions</source><creator>Liu, Shao-Qing ; Shahini, Ehsan ; Gao, Min-Rui ; Gong, Lu ; Sui, Peng-Fei ; Tang, Tian ; Zeng, Hongbo ; Luo, Jing-Li</creator><creatorcontrib>Liu, Shao-Qing ; Shahini, Ehsan ; Gao, Min-Rui ; Gong, Lu ; Sui, Peng-Fei ; Tang, Tian ; Zeng, Hongbo ; Luo, Jing-Li</creatorcontrib><description>The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of formate, the existing catalysts for CER fall short of expectation in maintaining the high formate selectivity and activity over a wide potential window. Through this study, we report that Bi2O3 nanosheets (NSs) grown on carbon nanofiber (CNF) with inherent hydrophobicity achieve a peak formate current density of 102.1 mA cm–2 and high formate Faradaic efficiency of &gt;93% over a very wide potential window of 1000 mV. To the best of our knowledge, this outperforms all the relevant achievements reported so far. In addition, the Bi2O3 NSs on CNF demonstrate a good antiflooding capability when operating in a flow cell system and can deliver a current density of 300 mA cm–2. Molecular dynamics simulations indicate that the hydrophobic carbon surface can repel water molecules to form a robust solid–liquid–gas triple-phase boundary and a concentrated CO2 layer; both can boost CER activity with the local high concentration of CO2 and through inhibiting the hydrogen evolution reaction (HER) by reducing proton contacts. This water-repelling effect also increases the local pH at the catalyst surface, thus inhibiting HER further. More significantly, the concept and methodology of this hydrophobic engineering could be broadly applicable to other formate-producing materials from CER.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c05737</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2021-11, Vol.15 (11), p.17757-17768</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1432-5979 ; 0000-0002-2465-7280 ; 0000-0001-5153-6516 ; 0000-0003-0586-7546 ; 0000-0003-2696-2059 ; 0000-0002-2387-3571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c05737$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c05737$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Liu, Shao-Qing</creatorcontrib><creatorcontrib>Shahini, Ehsan</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><creatorcontrib>Gong, Lu</creatorcontrib><creatorcontrib>Sui, Peng-Fei</creatorcontrib><creatorcontrib>Tang, Tian</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><creatorcontrib>Luo, Jing-Li</creatorcontrib><title>Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of formate, the existing catalysts for CER fall short of expectation in maintaining the high formate selectivity and activity over a wide potential window. Through this study, we report that Bi2O3 nanosheets (NSs) grown on carbon nanofiber (CNF) with inherent hydrophobicity achieve a peak formate current density of 102.1 mA cm–2 and high formate Faradaic efficiency of &gt;93% over a very wide potential window of 1000 mV. To the best of our knowledge, this outperforms all the relevant achievements reported so far. In addition, the Bi2O3 NSs on CNF demonstrate a good antiflooding capability when operating in a flow cell system and can deliver a current density of 300 mA cm–2. Molecular dynamics simulations indicate that the hydrophobic carbon surface can repel water molecules to form a robust solid–liquid–gas triple-phase boundary and a concentrated CO2 layer; both can boost CER activity with the local high concentration of CO2 and through inhibiting the hydrogen evolution reaction (HER) by reducing proton contacts. This water-repelling effect also increases the local pH at the catalyst surface, thus inhibiting HER further. More significantly, the concept and methodology of this hydrophobic engineering could be broadly applicable to other formate-producing materials from CER.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYsoOKfPvuZRkM78a9M-apnbYLg9KPpW0iS1GV0yk5Sx7-CHNmPDp3Mu93cPl5Mk9whOEMToiQtvuLETJGDGCLtIRqgkeQqL_Ovy32foOrnxfgMjU7B8lPy-aLwi4C1e-k6p4MHM2b0B1oCKuybKcdXqRjmw16EDC9Mpp0wA84N0dtfZRgsdDqC1Dsz1d5eulYt-y41QoFphMO2VCM46JQcRdAzUBnDwqaUCaxtikuZ9HI20-9vkquW9V3dnHScfr9P3ap4uV7NF9bxMOcpoSDkTsGGEKoYpbUhLGC1ZiWWBMoXKAmPIKYxojiTPIKEMwVZmRJS5KCVlkIyTh1PuztmfQflQb7UXqu-5UXbwNc4KSgkmiEX08YTGeuuNHZyJj9UI1sfO63Pn9blz8gclAHaa</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Liu, Shao-Qing</creator><creator>Shahini, Ehsan</creator><creator>Gao, Min-Rui</creator><creator>Gong, Lu</creator><creator>Sui, Peng-Fei</creator><creator>Tang, Tian</creator><creator>Zeng, Hongbo</creator><creator>Luo, Jing-Li</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1432-5979</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid><orcidid>https://orcid.org/0000-0001-5153-6516</orcidid><orcidid>https://orcid.org/0000-0003-0586-7546</orcidid><orcidid>https://orcid.org/0000-0003-2696-2059</orcidid><orcidid>https://orcid.org/0000-0002-2387-3571</orcidid></search><sort><creationdate>20211123</creationdate><title>Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window</title><author>Liu, Shao-Qing ; Shahini, Ehsan ; Gao, Min-Rui ; Gong, Lu ; Sui, Peng-Fei ; Tang, Tian ; Zeng, Hongbo ; Luo, Jing-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a154t-a7c0b734e7244b3f3749792d815e198220a40a1561da5034710fd53c96c9d4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shao-Qing</creatorcontrib><creatorcontrib>Shahini, Ehsan</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><creatorcontrib>Gong, Lu</creatorcontrib><creatorcontrib>Sui, Peng-Fei</creatorcontrib><creatorcontrib>Tang, Tian</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><creatorcontrib>Luo, Jing-Li</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shao-Qing</au><au>Shahini, Ehsan</au><au>Gao, Min-Rui</au><au>Gong, Lu</au><au>Sui, Peng-Fei</au><au>Tang, Tian</au><au>Zeng, Hongbo</au><au>Luo, Jing-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-11-23</date><risdate>2021</risdate><volume>15</volume><issue>11</issue><spage>17757</spage><epage>17768</epage><pages>17757-17768</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of formate, the existing catalysts for CER fall short of expectation in maintaining the high formate selectivity and activity over a wide potential window. Through this study, we report that Bi2O3 nanosheets (NSs) grown on carbon nanofiber (CNF) with inherent hydrophobicity achieve a peak formate current density of 102.1 mA cm–2 and high formate Faradaic efficiency of &gt;93% over a very wide potential window of 1000 mV. To the best of our knowledge, this outperforms all the relevant achievements reported so far. In addition, the Bi2O3 NSs on CNF demonstrate a good antiflooding capability when operating in a flow cell system and can deliver a current density of 300 mA cm–2. Molecular dynamics simulations indicate that the hydrophobic carbon surface can repel water molecules to form a robust solid–liquid–gas triple-phase boundary and a concentrated CO2 layer; both can boost CER activity with the local high concentration of CO2 and through inhibiting the hydrogen evolution reaction (HER) by reducing proton contacts. This water-repelling effect also increases the local pH at the catalyst surface, thus inhibiting HER further. More significantly, the concept and methodology of this hydrophobic engineering could be broadly applicable to other formate-producing materials from CER.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.1c05737</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1432-5979</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid><orcidid>https://orcid.org/0000-0001-5153-6516</orcidid><orcidid>https://orcid.org/0000-0003-0586-7546</orcidid><orcidid>https://orcid.org/0000-0003-2696-2059</orcidid><orcidid>https://orcid.org/0000-0002-2387-3571</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-11, Vol.15 (11), p.17757-17768
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2584432317
source American Chemical Society Web Editions
title Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi2O3%20Nanosheets%20Grown%20on%20Carbon%20Nanofiber%20with%20Inherent%20Hydrophobicity%20for%20High-Performance%20CO2%20Electroreduction%20in%20a%20Wide%20Potential%20Window&rft.jtitle=ACS%20nano&rft.au=Liu,%20Shao-Qing&rft.date=2021-11-23&rft.volume=15&rft.issue=11&rft.spage=17757&rft.epage=17768&rft.pages=17757-17768&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c05737&rft_dat=%3Cproquest_acs_j%3E2584432317%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584432317&rft_id=info:pmid/&rfr_iscdi=true