Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle

The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-11, Vol.93 (43), p.14448-14453
Hauptverfasser: Yamamoto, Takahiko, Ando, Tomohiro, Kawabe, Yusuke, Fukuma, Takeshi, Enomoto, Hiroshi, Nishijima, Yoshiaki, Matsui, Yoshihiko, Kanamura, Kiyoshi, Takahashi, Yasufumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14453
container_issue 43
container_start_page 14448
container_title Analytical chemistry (Washington)
container_volume 93
creator Yamamoto, Takahiko
Ando, Tomohiro
Kawabe, Yusuke
Fukuma, Takeshi
Enomoto, Hiroshi
Nishijima, Yoshiaki
Matsui, Yoshihiko
Kanamura, Kiyoshi
Takahashi, Yasufumi
description The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid–liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.
doi_str_mv 10.1021/acs.analchem.1c02851
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584017037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584017037</sourcerecordid><originalsourceid>FETCH-LOGICAL-a253t-28c34f6e4d3f84057eae63528086fdaef0ae8db663d909fcff5a58e7681bbe9f3</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRsFbfwMOCFy-ps7vJZnOU1qpQaNF6DtPNbJuSJjW7vfj0JrYieBrm55sf5mPsVsBIgBQPaP0Ia6zshnYjYUGaRJyxgUgkRNoYec4GAKAimQJcsivvtwBCgNADVo032KIN1JZfGMqm5o3jYUN8Qvuw6ZdJ6W3HrCnqIqoLqgMf_wR82WLtHbX8jXzpA9aW-gvk72W9rojPyikt5jFfYBtKW9E1u3BYebo5zSH7mD4txy_RbP78On6cRSgTFSJprIqdprhQzsSQpISkVSINGO0KJAdIplhprYoMMmedSzAxlGojVivKnBqy-2Pvvm0-D-RDvuueoKrCmpqDz2XS1YoUVNqhd__QbXNoO5c9lSmRaSFNR8GR6kz_AQLyXn_eh7_685N-9Q2bgnvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593196128</pqid></control><display><type>article</type><title>Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle</title><source>American Chemical Society Journals</source><creator>Yamamoto, Takahiko ; Ando, Tomohiro ; Kawabe, Yusuke ; Fukuma, Takeshi ; Enomoto, Hiroshi ; Nishijima, Yoshiaki ; Matsui, Yoshihiko ; Kanamura, Kiyoshi ; Takahashi, Yasufumi</creator><creatorcontrib>Yamamoto, Takahiko ; Ando, Tomohiro ; Kawabe, Yusuke ; Fukuma, Takeshi ; Enomoto, Hiroshi ; Nishijima, Yoshiaki ; Matsui, Yoshihiko ; Kanamura, Kiyoshi ; Takahashi, Yasufumi</creatorcontrib><description>The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid–liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c02851</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Charge transfer ; Chemistry ; Conduction ; Discharge ; Electrochemical cells ; Electrochemistry ; Evaluation ; Liquid-solid interfaces ; Lithium ; Lithium ions ; Mass transport ; Rechargeable batteries ; Storage batteries ; Surface charge</subject><ispartof>Analytical chemistry (Washington), 2021-11, Vol.93 (43), p.14448-14453</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 2, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2834-8300 ; 0000-0001-8971-6002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c02851$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c02851$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yamamoto, Takahiko</creatorcontrib><creatorcontrib>Ando, Tomohiro</creatorcontrib><creatorcontrib>Kawabe, Yusuke</creatorcontrib><creatorcontrib>Fukuma, Takeshi</creatorcontrib><creatorcontrib>Enomoto, Hiroshi</creatorcontrib><creatorcontrib>Nishijima, Yoshiaki</creatorcontrib><creatorcontrib>Matsui, Yoshihiko</creatorcontrib><creatorcontrib>Kanamura, Kiyoshi</creatorcontrib><creatorcontrib>Takahashi, Yasufumi</creatorcontrib><title>Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid–liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.</description><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Conduction</subject><subject>Discharge</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Evaluation</subject><subject>Liquid-solid interfaces</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Mass transport</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Surface charge</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKw0AQhhdRsFbfwMOCFy-ps7vJZnOU1qpQaNF6DtPNbJuSJjW7vfj0JrYieBrm55sf5mPsVsBIgBQPaP0Ia6zshnYjYUGaRJyxgUgkRNoYec4GAKAimQJcsivvtwBCgNADVo032KIN1JZfGMqm5o3jYUN8Qvuw6ZdJ6W3HrCnqIqoLqgMf_wR82WLtHbX8jXzpA9aW-gvk72W9rojPyikt5jFfYBtKW9E1u3BYebo5zSH7mD4txy_RbP78On6cRSgTFSJprIqdprhQzsSQpISkVSINGO0KJAdIplhprYoMMmedSzAxlGojVivKnBqy-2Pvvm0-D-RDvuueoKrCmpqDz2XS1YoUVNqhd__QbXNoO5c9lSmRaSFNR8GR6kz_AQLyXn_eh7_685N-9Q2bgnvO</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Yamamoto, Takahiko</creator><creator>Ando, Tomohiro</creator><creator>Kawabe, Yusuke</creator><creator>Fukuma, Takeshi</creator><creator>Enomoto, Hiroshi</creator><creator>Nishijima, Yoshiaki</creator><creator>Matsui, Yoshihiko</creator><creator>Kanamura, Kiyoshi</creator><creator>Takahashi, Yasufumi</creator><general>American Chemical Society</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2834-8300</orcidid><orcidid>https://orcid.org/0000-0001-8971-6002</orcidid></search><sort><creationdate>20211102</creationdate><title>Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle</title><author>Yamamoto, Takahiko ; Ando, Tomohiro ; Kawabe, Yusuke ; Fukuma, Takeshi ; Enomoto, Hiroshi ; Nishijima, Yoshiaki ; Matsui, Yoshihiko ; Kanamura, Kiyoshi ; Takahashi, Yasufumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a253t-28c34f6e4d3f84057eae63528086fdaef0ae8db663d909fcff5a58e7681bbe9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Conduction</topic><topic>Discharge</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Evaluation</topic><topic>Liquid-solid interfaces</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Mass transport</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Takahiko</creatorcontrib><creatorcontrib>Ando, Tomohiro</creatorcontrib><creatorcontrib>Kawabe, Yusuke</creatorcontrib><creatorcontrib>Fukuma, Takeshi</creatorcontrib><creatorcontrib>Enomoto, Hiroshi</creatorcontrib><creatorcontrib>Nishijima, Yoshiaki</creatorcontrib><creatorcontrib>Matsui, Yoshihiko</creatorcontrib><creatorcontrib>Kanamura, Kiyoshi</creatorcontrib><creatorcontrib>Takahashi, Yasufumi</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Takahiko</au><au>Ando, Tomohiro</au><au>Kawabe, Yusuke</au><au>Fukuma, Takeshi</au><au>Enomoto, Hiroshi</au><au>Nishijima, Yoshiaki</au><au>Matsui, Yoshihiko</au><au>Kanamura, Kiyoshi</au><au>Takahashi, Yasufumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-11-02</date><risdate>2021</risdate><volume>93</volume><issue>43</issue><spage>14448</spage><epage>14453</epage><pages>14448-14453</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid–liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.1c02851</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2834-8300</orcidid><orcidid>https://orcid.org/0000-0001-8971-6002</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2021-11, Vol.93 (43), p.14448-14453
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2584017037
source American Chemical Society Journals
subjects Charge transfer
Chemistry
Conduction
Discharge
Electrochemical cells
Electrochemistry
Evaluation
Liquid-solid interfaces
Lithium
Lithium ions
Mass transport
Rechargeable batteries
Storage batteries
Surface charge
title Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20Depth%20of%20Discharge-Dependent%20Charge%20Transfer%20Resistance%20of%20a%20Single%20LiFePO4%20Particle&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yamamoto,%20Takahiko&rft.date=2021-11-02&rft.volume=93&rft.issue=43&rft.spage=14448&rft.epage=14453&rft.pages=14448-14453&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c02851&rft_dat=%3Cproquest_acs_j%3E2584017037%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593196128&rft_id=info:pmid/&rfr_iscdi=true