Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle
The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is re...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-11, Vol.93 (43), p.14448-14453 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14453 |
---|---|
container_issue | 43 |
container_start_page | 14448 |
container_title | Analytical chemistry (Washington) |
container_volume | 93 |
creator | Yamamoto, Takahiko Ando, Tomohiro Kawabe, Yusuke Fukuma, Takeshi Enomoto, Hiroshi Nishijima, Yoshiaki Matsui, Yoshihiko Kanamura, Kiyoshi Takahashi, Yasufumi |
description | The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid–liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM. |
doi_str_mv | 10.1021/acs.analchem.1c02851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584017037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584017037</sourcerecordid><originalsourceid>FETCH-LOGICAL-a253t-28c34f6e4d3f84057eae63528086fdaef0ae8db663d909fcff5a58e7681bbe9f3</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRsFbfwMOCFy-ps7vJZnOU1qpQaNF6DtPNbJuSJjW7vfj0JrYieBrm55sf5mPsVsBIgBQPaP0Ia6zshnYjYUGaRJyxgUgkRNoYec4GAKAimQJcsivvtwBCgNADVo032KIN1JZfGMqm5o3jYUN8Qvuw6ZdJ6W3HrCnqIqoLqgMf_wR82WLtHbX8jXzpA9aW-gvk72W9rojPyikt5jFfYBtKW9E1u3BYebo5zSH7mD4txy_RbP78On6cRSgTFSJprIqdprhQzsSQpISkVSINGO0KJAdIplhprYoMMmedSzAxlGojVivKnBqy-2Pvvm0-D-RDvuueoKrCmpqDz2XS1YoUVNqhd__QbXNoO5c9lSmRaSFNR8GR6kz_AQLyXn_eh7_685N-9Q2bgnvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593196128</pqid></control><display><type>article</type><title>Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle</title><source>American Chemical Society Journals</source><creator>Yamamoto, Takahiko ; Ando, Tomohiro ; Kawabe, Yusuke ; Fukuma, Takeshi ; Enomoto, Hiroshi ; Nishijima, Yoshiaki ; Matsui, Yoshihiko ; Kanamura, Kiyoshi ; Takahashi, Yasufumi</creator><creatorcontrib>Yamamoto, Takahiko ; Ando, Tomohiro ; Kawabe, Yusuke ; Fukuma, Takeshi ; Enomoto, Hiroshi ; Nishijima, Yoshiaki ; Matsui, Yoshihiko ; Kanamura, Kiyoshi ; Takahashi, Yasufumi</creatorcontrib><description>The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid–liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c02851</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Charge transfer ; Chemistry ; Conduction ; Discharge ; Electrochemical cells ; Electrochemistry ; Evaluation ; Liquid-solid interfaces ; Lithium ; Lithium ions ; Mass transport ; Rechargeable batteries ; Storage batteries ; Surface charge</subject><ispartof>Analytical chemistry (Washington), 2021-11, Vol.93 (43), p.14448-14453</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 2, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2834-8300 ; 0000-0001-8971-6002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c02851$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c02851$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yamamoto, Takahiko</creatorcontrib><creatorcontrib>Ando, Tomohiro</creatorcontrib><creatorcontrib>Kawabe, Yusuke</creatorcontrib><creatorcontrib>Fukuma, Takeshi</creatorcontrib><creatorcontrib>Enomoto, Hiroshi</creatorcontrib><creatorcontrib>Nishijima, Yoshiaki</creatorcontrib><creatorcontrib>Matsui, Yoshihiko</creatorcontrib><creatorcontrib>Kanamura, Kiyoshi</creatorcontrib><creatorcontrib>Takahashi, Yasufumi</creatorcontrib><title>Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid–liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.</description><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Conduction</subject><subject>Discharge</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Evaluation</subject><subject>Liquid-solid interfaces</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Mass transport</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Surface charge</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKw0AQhhdRsFbfwMOCFy-ps7vJZnOU1qpQaNF6DtPNbJuSJjW7vfj0JrYieBrm55sf5mPsVsBIgBQPaP0Ia6zshnYjYUGaRJyxgUgkRNoYec4GAKAimQJcsivvtwBCgNADVo032KIN1JZfGMqm5o3jYUN8Qvuw6ZdJ6W3HrCnqIqoLqgMf_wR82WLtHbX8jXzpA9aW-gvk72W9rojPyikt5jFfYBtKW9E1u3BYebo5zSH7mD4txy_RbP78On6cRSgTFSJprIqdprhQzsSQpISkVSINGO0KJAdIplhprYoMMmedSzAxlGojVivKnBqy-2Pvvm0-D-RDvuueoKrCmpqDz2XS1YoUVNqhd__QbXNoO5c9lSmRaSFNR8GR6kz_AQLyXn_eh7_685N-9Q2bgnvO</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Yamamoto, Takahiko</creator><creator>Ando, Tomohiro</creator><creator>Kawabe, Yusuke</creator><creator>Fukuma, Takeshi</creator><creator>Enomoto, Hiroshi</creator><creator>Nishijima, Yoshiaki</creator><creator>Matsui, Yoshihiko</creator><creator>Kanamura, Kiyoshi</creator><creator>Takahashi, Yasufumi</creator><general>American Chemical Society</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2834-8300</orcidid><orcidid>https://orcid.org/0000-0001-8971-6002</orcidid></search><sort><creationdate>20211102</creationdate><title>Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle</title><author>Yamamoto, Takahiko ; Ando, Tomohiro ; Kawabe, Yusuke ; Fukuma, Takeshi ; Enomoto, Hiroshi ; Nishijima, Yoshiaki ; Matsui, Yoshihiko ; Kanamura, Kiyoshi ; Takahashi, Yasufumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a253t-28c34f6e4d3f84057eae63528086fdaef0ae8db663d909fcff5a58e7681bbe9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Conduction</topic><topic>Discharge</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Evaluation</topic><topic>Liquid-solid interfaces</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Mass transport</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Takahiko</creatorcontrib><creatorcontrib>Ando, Tomohiro</creatorcontrib><creatorcontrib>Kawabe, Yusuke</creatorcontrib><creatorcontrib>Fukuma, Takeshi</creatorcontrib><creatorcontrib>Enomoto, Hiroshi</creatorcontrib><creatorcontrib>Nishijima, Yoshiaki</creatorcontrib><creatorcontrib>Matsui, Yoshihiko</creatorcontrib><creatorcontrib>Kanamura, Kiyoshi</creatorcontrib><creatorcontrib>Takahashi, Yasufumi</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Takahiko</au><au>Ando, Tomohiro</au><au>Kawabe, Yusuke</au><au>Fukuma, Takeshi</au><au>Enomoto, Hiroshi</au><au>Nishijima, Yoshiaki</au><au>Matsui, Yoshihiko</au><au>Kanamura, Kiyoshi</au><au>Takahashi, Yasufumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-11-02</date><risdate>2021</risdate><volume>93</volume><issue>43</issue><spage>14448</spage><epage>14453</epage><pages>14448-14453</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid–liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid–liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.1c02851</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2834-8300</orcidid><orcidid>https://orcid.org/0000-0001-8971-6002</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2021-11, Vol.93 (43), p.14448-14453 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2584017037 |
source | American Chemical Society Journals |
subjects | Charge transfer Chemistry Conduction Discharge Electrochemical cells Electrochemistry Evaluation Liquid-solid interfaces Lithium Lithium ions Mass transport Rechargeable batteries Storage batteries Surface charge |
title | Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20Depth%20of%20Discharge-Dependent%20Charge%20Transfer%20Resistance%20of%20a%20Single%20LiFePO4%20Particle&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yamamoto,%20Takahiko&rft.date=2021-11-02&rft.volume=93&rft.issue=43&rft.spage=14448&rft.epage=14453&rft.pages=14448-14453&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c02851&rft_dat=%3Cproquest_acs_j%3E2584017037%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593196128&rft_id=info:pmid/&rfr_iscdi=true |