Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination

Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2022-02, Vol.70 (2), p.303-320
Hauptverfasser: Palandri, Anabela, Bonnet, Laura Vanesa, Farias, Maria Gimena, Hallak, Marta Elena, Galiano, Mauricio Raul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 2
container_start_page 303
container_title Glia
container_volume 70
creator Palandri, Anabela
Bonnet, Laura Vanesa
Farias, Maria Gimena
Hallak, Marta Elena
Galiano, Mauricio Raul
description Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of cellular processes, including cell migration, apoptosis, and cytoskeletal organization. Ate1 is associated with neuronal functions such as neurogenesis and neurite growth. However, the role of Ate1 in glial development, including oligodendrocyte (OL) differentiation and myelination processes in the central nervous system, is poorly understood. The present study revealed a peak in Ate1 protein expression during myelination process in primary cultured OLs. Post‐transcriptional downregulation of Ate1 reduced the number of OL processes, and branching complexity, in vitro. We conditionally ablated Ate1 from OLs in mice using 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase‐Cre promoter (“Ate1‐KO” mice), to assess the role of Ate1 in OL function and axonal myelination in vivo. Immunostaining for OL differentiation markers revealed a notable reduction of mature OLs in corpus callosum of 14‐day‐old Ate1‐KO, but no changes in spinal cord, in comparison with wild‐type controls. Local proliferation of OL precursor cells was elevated in corpus callosum of 21‐day‐old Ate1‐KO, but was unchanged in spinal cord. Five‐month‐old Ate1‐KO displayed reductions of mature OL number and myelin thickness, with alterations of motor behaviors. Our findings, taken together, demonstrate that Ate1 helps maintain proper OL differentiation and myelination in corpus callosum in vivo, and that protein arginylation plays an essential role in developmental myelination. MAIN POINTS: Ate1 expression increases during myelination. Ate1 is required for proper oligodendrocyte differentiation. Ate1 contributes to efficient myelination and motor functions. Ate1 affects actin cytoskeleton during CNS myelination.
doi_str_mv 10.1002/glia.24107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584014350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584014350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-ed3e45e699a5166bdee835d3f53d745d04a793942674d342e546f8f16e6a806e3</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhUVJaBy3mz5AEWQTAuNKo5-ZWRqTOAHTQGnXQh7dMQoayZXGLbPLI-QZ8ySRYzeLLLq6HPg499x7EPpCyYwSUn7bOKtnJaek-oAmlDR1QSmTJ2hC6oYXlDf0DJ2n9EAIzaL6iM4Yl7IpGZugMF87PdjgceiwjhvrR_f8-DT8-D7PYxvDANbjIWqfOog6Ac4yOLsJBryJoR0HSNj2W21jwi34jDrsIf4Ju4TTmAbocT-Cs_51zSd02mmX4PNxTtGvm-ufi9tidb-8W8xXRctEVRVgGHABsmm0oFKuDUDNhGGdYKbiwhCuq4Y1vJQVN4yXILjs6o5KkLomEtgUXR588wm_d5AG1dvUgnPaQ06mSlFzQjkTJKMX79CHsIs-p1OlJDVlFSllpq4OVBtDShE6tY2213FUlKh9DWpfg3qtIcNfj5a7dQ_mDf339wzQA_DXOhj_Y6WWq7v5wfQFpfaVbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608137026</pqid></control><display><type>article</type><title>Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Palandri, Anabela ; Bonnet, Laura Vanesa ; Farias, Maria Gimena ; Hallak, Marta Elena ; Galiano, Mauricio Raul</creator><creatorcontrib>Palandri, Anabela ; Bonnet, Laura Vanesa ; Farias, Maria Gimena ; Hallak, Marta Elena ; Galiano, Mauricio Raul</creatorcontrib><description>Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of cellular processes, including cell migration, apoptosis, and cytoskeletal organization. Ate1 is associated with neuronal functions such as neurogenesis and neurite growth. However, the role of Ate1 in glial development, including oligodendrocyte (OL) differentiation and myelination processes in the central nervous system, is poorly understood. The present study revealed a peak in Ate1 protein expression during myelination process in primary cultured OLs. Post‐transcriptional downregulation of Ate1 reduced the number of OL processes, and branching complexity, in vitro. We conditionally ablated Ate1 from OLs in mice using 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase‐Cre promoter (“Ate1‐KO” mice), to assess the role of Ate1 in OL function and axonal myelination in vivo. Immunostaining for OL differentiation markers revealed a notable reduction of mature OLs in corpus callosum of 14‐day‐old Ate1‐KO, but no changes in spinal cord, in comparison with wild‐type controls. Local proliferation of OL precursor cells was elevated in corpus callosum of 21‐day‐old Ate1‐KO, but was unchanged in spinal cord. Five‐month‐old Ate1‐KO displayed reductions of mature OL number and myelin thickness, with alterations of motor behaviors. Our findings, taken together, demonstrate that Ate1 helps maintain proper OL differentiation and myelination in corpus callosum in vivo, and that protein arginylation plays an essential role in developmental myelination. MAIN POINTS: Ate1 expression increases during myelination. Ate1 is required for proper oligodendrocyte differentiation. Ate1 contributes to efficient myelination and motor functions. Ate1 affects actin cytoskeleton during CNS myelination.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.24107</identifier><identifier>PMID: 34669233</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Ablation ; Animals ; Apoptosis ; Arginine - metabolism ; arginylation ; arginyltransferase 1 ; Cell migration ; Cell proliferation ; Central nervous system ; Central Nervous System - metabolism ; Corpus callosum ; Cytoskeleton ; Differentiation ; Mice ; Myelin ; Myelin Sheath - metabolism ; Myelination ; Nervous system ; Neurogenesis ; Neuronal-glial interactions ; Nucleotides ; oligodendrocyte ; Oligodendrocytes ; Oligodendroglia - metabolism ; Phosphodiesterase ; post‐translational modification ; Protein Processing, Post-Translational ; Protein structure ; Proteins ; Spinal cord ; Structure-function relationships ; Substrates ; Transcription ; Transfer RNA ; tRNA Arg</subject><ispartof>Glia, 2022-02, Vol.70 (2), p.303-320</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-ed3e45e699a5166bdee835d3f53d745d04a793942674d342e546f8f16e6a806e3</citedby><cites>FETCH-LOGICAL-c3577-ed3e45e699a5166bdee835d3f53d745d04a793942674d342e546f8f16e6a806e3</cites><orcidid>0000-0002-8245-1715 ; 0000-0003-4856-879X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.24107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.24107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34669233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palandri, Anabela</creatorcontrib><creatorcontrib>Bonnet, Laura Vanesa</creatorcontrib><creatorcontrib>Farias, Maria Gimena</creatorcontrib><creatorcontrib>Hallak, Marta Elena</creatorcontrib><creatorcontrib>Galiano, Mauricio Raul</creatorcontrib><title>Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination</title><title>Glia</title><addtitle>Glia</addtitle><description>Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of cellular processes, including cell migration, apoptosis, and cytoskeletal organization. Ate1 is associated with neuronal functions such as neurogenesis and neurite growth. However, the role of Ate1 in glial development, including oligodendrocyte (OL) differentiation and myelination processes in the central nervous system, is poorly understood. The present study revealed a peak in Ate1 protein expression during myelination process in primary cultured OLs. Post‐transcriptional downregulation of Ate1 reduced the number of OL processes, and branching complexity, in vitro. We conditionally ablated Ate1 from OLs in mice using 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase‐Cre promoter (“Ate1‐KO” mice), to assess the role of Ate1 in OL function and axonal myelination in vivo. Immunostaining for OL differentiation markers revealed a notable reduction of mature OLs in corpus callosum of 14‐day‐old Ate1‐KO, but no changes in spinal cord, in comparison with wild‐type controls. Local proliferation of OL precursor cells was elevated in corpus callosum of 21‐day‐old Ate1‐KO, but was unchanged in spinal cord. Five‐month‐old Ate1‐KO displayed reductions of mature OL number and myelin thickness, with alterations of motor behaviors. Our findings, taken together, demonstrate that Ate1 helps maintain proper OL differentiation and myelination in corpus callosum in vivo, and that protein arginylation plays an essential role in developmental myelination. MAIN POINTS: Ate1 expression increases during myelination. Ate1 is required for proper oligodendrocyte differentiation. Ate1 contributes to efficient myelination and motor functions. Ate1 affects actin cytoskeleton during CNS myelination.</description><subject>Ablation</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Arginine - metabolism</subject><subject>arginylation</subject><subject>arginyltransferase 1</subject><subject>Cell migration</subject><subject>Cell proliferation</subject><subject>Central nervous system</subject><subject>Central Nervous System - metabolism</subject><subject>Corpus callosum</subject><subject>Cytoskeleton</subject><subject>Differentiation</subject><subject>Mice</subject><subject>Myelin</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelination</subject><subject>Nervous system</subject><subject>Neurogenesis</subject><subject>Neuronal-glial interactions</subject><subject>Nucleotides</subject><subject>oligodendrocyte</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - metabolism</subject><subject>Phosphodiesterase</subject><subject>post‐translational modification</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Spinal cord</subject><subject>Structure-function relationships</subject><subject>Substrates</subject><subject>Transcription</subject><subject>Transfer RNA</subject><subject>tRNA Arg</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1qGzEUhUVJaBy3mz5AEWQTAuNKo5-ZWRqTOAHTQGnXQh7dMQoayZXGLbPLI-QZ8ySRYzeLLLq6HPg499x7EPpCyYwSUn7bOKtnJaek-oAmlDR1QSmTJ2hC6oYXlDf0DJ2n9EAIzaL6iM4Yl7IpGZugMF87PdjgceiwjhvrR_f8-DT8-D7PYxvDANbjIWqfOog6Ac4yOLsJBryJoR0HSNj2W21jwi34jDrsIf4Ju4TTmAbocT-Cs_51zSd02mmX4PNxTtGvm-ufi9tidb-8W8xXRctEVRVgGHABsmm0oFKuDUDNhGGdYKbiwhCuq4Y1vJQVN4yXILjs6o5KkLomEtgUXR588wm_d5AG1dvUgnPaQ06mSlFzQjkTJKMX79CHsIs-p1OlJDVlFSllpq4OVBtDShE6tY2213FUlKh9DWpfg3qtIcNfj5a7dQ_mDf339wzQA_DXOhj_Y6WWq7v5wfQFpfaVbA</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Palandri, Anabela</creator><creator>Bonnet, Laura Vanesa</creator><creator>Farias, Maria Gimena</creator><creator>Hallak, Marta Elena</creator><creator>Galiano, Mauricio Raul</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8245-1715</orcidid><orcidid>https://orcid.org/0000-0003-4856-879X</orcidid></search><sort><creationdate>202202</creationdate><title>Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination</title><author>Palandri, Anabela ; Bonnet, Laura Vanesa ; Farias, Maria Gimena ; Hallak, Marta Elena ; Galiano, Mauricio Raul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-ed3e45e699a5166bdee835d3f53d745d04a793942674d342e546f8f16e6a806e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Arginine - metabolism</topic><topic>arginylation</topic><topic>arginyltransferase 1</topic><topic>Cell migration</topic><topic>Cell proliferation</topic><topic>Central nervous system</topic><topic>Central Nervous System - metabolism</topic><topic>Corpus callosum</topic><topic>Cytoskeleton</topic><topic>Differentiation</topic><topic>Mice</topic><topic>Myelin</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelination</topic><topic>Nervous system</topic><topic>Neurogenesis</topic><topic>Neuronal-glial interactions</topic><topic>Nucleotides</topic><topic>oligodendrocyte</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - metabolism</topic><topic>Phosphodiesterase</topic><topic>post‐translational modification</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Spinal cord</topic><topic>Structure-function relationships</topic><topic>Substrates</topic><topic>Transcription</topic><topic>Transfer RNA</topic><topic>tRNA Arg</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palandri, Anabela</creatorcontrib><creatorcontrib>Bonnet, Laura Vanesa</creatorcontrib><creatorcontrib>Farias, Maria Gimena</creatorcontrib><creatorcontrib>Hallak, Marta Elena</creatorcontrib><creatorcontrib>Galiano, Mauricio Raul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palandri, Anabela</au><au>Bonnet, Laura Vanesa</au><au>Farias, Maria Gimena</au><au>Hallak, Marta Elena</au><au>Galiano, Mauricio Raul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2022-02</date><risdate>2022</risdate><volume>70</volume><issue>2</issue><spage>303</spage><epage>320</epage><pages>303-320</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of cellular processes, including cell migration, apoptosis, and cytoskeletal organization. Ate1 is associated with neuronal functions such as neurogenesis and neurite growth. However, the role of Ate1 in glial development, including oligodendrocyte (OL) differentiation and myelination processes in the central nervous system, is poorly understood. The present study revealed a peak in Ate1 protein expression during myelination process in primary cultured OLs. Post‐transcriptional downregulation of Ate1 reduced the number of OL processes, and branching complexity, in vitro. We conditionally ablated Ate1 from OLs in mice using 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase‐Cre promoter (“Ate1‐KO” mice), to assess the role of Ate1 in OL function and axonal myelination in vivo. Immunostaining for OL differentiation markers revealed a notable reduction of mature OLs in corpus callosum of 14‐day‐old Ate1‐KO, but no changes in spinal cord, in comparison with wild‐type controls. Local proliferation of OL precursor cells was elevated in corpus callosum of 21‐day‐old Ate1‐KO, but was unchanged in spinal cord. Five‐month‐old Ate1‐KO displayed reductions of mature OL number and myelin thickness, with alterations of motor behaviors. Our findings, taken together, demonstrate that Ate1 helps maintain proper OL differentiation and myelination in corpus callosum in vivo, and that protein arginylation plays an essential role in developmental myelination. MAIN POINTS: Ate1 expression increases during myelination. Ate1 is required for proper oligodendrocyte differentiation. Ate1 contributes to efficient myelination and motor functions. Ate1 affects actin cytoskeleton during CNS myelination.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34669233</pmid><doi>10.1002/glia.24107</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8245-1715</orcidid><orcidid>https://orcid.org/0000-0003-4856-879X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2022-02, Vol.70 (2), p.303-320
issn 0894-1491
1098-1136
language eng
recordid cdi_proquest_miscellaneous_2584014350
source MEDLINE; Access via Wiley Online Library
subjects Ablation
Animals
Apoptosis
Arginine - metabolism
arginylation
arginyltransferase 1
Cell migration
Cell proliferation
Central nervous system
Central Nervous System - metabolism
Corpus callosum
Cytoskeleton
Differentiation
Mice
Myelin
Myelin Sheath - metabolism
Myelination
Nervous system
Neurogenesis
Neuronal-glial interactions
Nucleotides
oligodendrocyte
Oligodendrocytes
Oligodendroglia - metabolism
Phosphodiesterase
post‐translational modification
Protein Processing, Post-Translational
Protein structure
Proteins
Spinal cord
Structure-function relationships
Substrates
Transcription
Transfer RNA
tRNA Arg
title Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ablation%20of%20arginyl%E2%80%90tRNA%E2%80%90protein%20transferase%20in%20oligodendrocytes%20impairs%20central%20nervous%20system%20myelination&rft.jtitle=Glia&rft.au=Palandri,%20Anabela&rft.date=2022-02&rft.volume=70&rft.issue=2&rft.spage=303&rft.epage=320&rft.pages=303-320&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.24107&rft_dat=%3Cproquest_cross%3E2584014350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608137026&rft_id=info:pmid/34669233&rfr_iscdi=true