Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination
Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of...
Gespeichert in:
Veröffentlicht in: | Glia 2022-02, Vol.70 (2), p.303-320 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | 2 |
container_start_page | 303 |
container_title | Glia |
container_volume | 70 |
creator | Palandri, Anabela Bonnet, Laura Vanesa Farias, Maria Gimena Hallak, Marta Elena Galiano, Mauricio Raul |
description | Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of cellular processes, including cell migration, apoptosis, and cytoskeletal organization. Ate1 is associated with neuronal functions such as neurogenesis and neurite growth. However, the role of Ate1 in glial development, including oligodendrocyte (OL) differentiation and myelination processes in the central nervous system, is poorly understood. The present study revealed a peak in Ate1 protein expression during myelination process in primary cultured OLs. Post‐transcriptional downregulation of Ate1 reduced the number of OL processes, and branching complexity, in vitro. We conditionally ablated Ate1 from OLs in mice using 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase‐Cre promoter (“Ate1‐KO” mice), to assess the role of Ate1 in OL function and axonal myelination in vivo. Immunostaining for OL differentiation markers revealed a notable reduction of mature OLs in corpus callosum of 14‐day‐old Ate1‐KO, but no changes in spinal cord, in comparison with wild‐type controls. Local proliferation of OL precursor cells was elevated in corpus callosum of 21‐day‐old Ate1‐KO, but was unchanged in spinal cord. Five‐month‐old Ate1‐KO displayed reductions of mature OL number and myelin thickness, with alterations of motor behaviors. Our findings, taken together, demonstrate that Ate1 helps maintain proper OL differentiation and myelination in corpus callosum in vivo, and that protein arginylation plays an essential role in developmental myelination.
MAIN POINTS:
Ate1 expression increases during myelination.
Ate1 is required for proper oligodendrocyte differentiation.
Ate1 contributes to efficient myelination and motor functions.
Ate1 affects actin cytoskeleton during CNS myelination. |
doi_str_mv | 10.1002/glia.24107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584014350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584014350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-ed3e45e699a5166bdee835d3f53d745d04a793942674d342e546f8f16e6a806e3</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhUVJaBy3mz5AEWQTAuNKo5-ZWRqTOAHTQGnXQh7dMQoayZXGLbPLI-QZ8ySRYzeLLLq6HPg499x7EPpCyYwSUn7bOKtnJaek-oAmlDR1QSmTJ2hC6oYXlDf0DJ2n9EAIzaL6iM4Yl7IpGZugMF87PdjgceiwjhvrR_f8-DT8-D7PYxvDANbjIWqfOog6Ac4yOLsJBryJoR0HSNj2W21jwi34jDrsIf4Ju4TTmAbocT-Cs_51zSd02mmX4PNxTtGvm-ufi9tidb-8W8xXRctEVRVgGHABsmm0oFKuDUDNhGGdYKbiwhCuq4Y1vJQVN4yXILjs6o5KkLomEtgUXR588wm_d5AG1dvUgnPaQ06mSlFzQjkTJKMX79CHsIs-p1OlJDVlFSllpq4OVBtDShE6tY2213FUlKh9DWpfg3qtIcNfj5a7dQ_mDf339wzQA_DXOhj_Y6WWq7v5wfQFpfaVbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608137026</pqid></control><display><type>article</type><title>Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Palandri, Anabela ; Bonnet, Laura Vanesa ; Farias, Maria Gimena ; Hallak, Marta Elena ; Galiano, Mauricio Raul</creator><creatorcontrib>Palandri, Anabela ; Bonnet, Laura Vanesa ; Farias, Maria Gimena ; Hallak, Marta Elena ; Galiano, Mauricio Raul</creatorcontrib><description>Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of cellular processes, including cell migration, apoptosis, and cytoskeletal organization. Ate1 is associated with neuronal functions such as neurogenesis and neurite growth. However, the role of Ate1 in glial development, including oligodendrocyte (OL) differentiation and myelination processes in the central nervous system, is poorly understood. The present study revealed a peak in Ate1 protein expression during myelination process in primary cultured OLs. Post‐transcriptional downregulation of Ate1 reduced the number of OL processes, and branching complexity, in vitro. We conditionally ablated Ate1 from OLs in mice using 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase‐Cre promoter (“Ate1‐KO” mice), to assess the role of Ate1 in OL function and axonal myelination in vivo. Immunostaining for OL differentiation markers revealed a notable reduction of mature OLs in corpus callosum of 14‐day‐old Ate1‐KO, but no changes in spinal cord, in comparison with wild‐type controls. Local proliferation of OL precursor cells was elevated in corpus callosum of 21‐day‐old Ate1‐KO, but was unchanged in spinal cord. Five‐month‐old Ate1‐KO displayed reductions of mature OL number and myelin thickness, with alterations of motor behaviors. Our findings, taken together, demonstrate that Ate1 helps maintain proper OL differentiation and myelination in corpus callosum in vivo, and that protein arginylation plays an essential role in developmental myelination.
MAIN POINTS:
Ate1 expression increases during myelination.
Ate1 is required for proper oligodendrocyte differentiation.
Ate1 contributes to efficient myelination and motor functions.
Ate1 affects actin cytoskeleton during CNS myelination.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.24107</identifier><identifier>PMID: 34669233</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Ablation ; Animals ; Apoptosis ; Arginine - metabolism ; arginylation ; arginyltransferase 1 ; Cell migration ; Cell proliferation ; Central nervous system ; Central Nervous System - metabolism ; Corpus callosum ; Cytoskeleton ; Differentiation ; Mice ; Myelin ; Myelin Sheath - metabolism ; Myelination ; Nervous system ; Neurogenesis ; Neuronal-glial interactions ; Nucleotides ; oligodendrocyte ; Oligodendrocytes ; Oligodendroglia - metabolism ; Phosphodiesterase ; post‐translational modification ; Protein Processing, Post-Translational ; Protein structure ; Proteins ; Spinal cord ; Structure-function relationships ; Substrates ; Transcription ; Transfer RNA ; tRNA Arg</subject><ispartof>Glia, 2022-02, Vol.70 (2), p.303-320</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-ed3e45e699a5166bdee835d3f53d745d04a793942674d342e546f8f16e6a806e3</citedby><cites>FETCH-LOGICAL-c3577-ed3e45e699a5166bdee835d3f53d745d04a793942674d342e546f8f16e6a806e3</cites><orcidid>0000-0002-8245-1715 ; 0000-0003-4856-879X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.24107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.24107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34669233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palandri, Anabela</creatorcontrib><creatorcontrib>Bonnet, Laura Vanesa</creatorcontrib><creatorcontrib>Farias, Maria Gimena</creatorcontrib><creatorcontrib>Hallak, Marta Elena</creatorcontrib><creatorcontrib>Galiano, Mauricio Raul</creatorcontrib><title>Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination</title><title>Glia</title><addtitle>Glia</addtitle><description>Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of cellular processes, including cell migration, apoptosis, and cytoskeletal organization. Ate1 is associated with neuronal functions such as neurogenesis and neurite growth. However, the role of Ate1 in glial development, including oligodendrocyte (OL) differentiation and myelination processes in the central nervous system, is poorly understood. The present study revealed a peak in Ate1 protein expression during myelination process in primary cultured OLs. Post‐transcriptional downregulation of Ate1 reduced the number of OL processes, and branching complexity, in vitro. We conditionally ablated Ate1 from OLs in mice using 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase‐Cre promoter (“Ate1‐KO” mice), to assess the role of Ate1 in OL function and axonal myelination in vivo. Immunostaining for OL differentiation markers revealed a notable reduction of mature OLs in corpus callosum of 14‐day‐old Ate1‐KO, but no changes in spinal cord, in comparison with wild‐type controls. Local proliferation of OL precursor cells was elevated in corpus callosum of 21‐day‐old Ate1‐KO, but was unchanged in spinal cord. Five‐month‐old Ate1‐KO displayed reductions of mature OL number and myelin thickness, with alterations of motor behaviors. Our findings, taken together, demonstrate that Ate1 helps maintain proper OL differentiation and myelination in corpus callosum in vivo, and that protein arginylation plays an essential role in developmental myelination.
MAIN POINTS:
Ate1 expression increases during myelination.
Ate1 is required for proper oligodendrocyte differentiation.
Ate1 contributes to efficient myelination and motor functions.
Ate1 affects actin cytoskeleton during CNS myelination.</description><subject>Ablation</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Arginine - metabolism</subject><subject>arginylation</subject><subject>arginyltransferase 1</subject><subject>Cell migration</subject><subject>Cell proliferation</subject><subject>Central nervous system</subject><subject>Central Nervous System - metabolism</subject><subject>Corpus callosum</subject><subject>Cytoskeleton</subject><subject>Differentiation</subject><subject>Mice</subject><subject>Myelin</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelination</subject><subject>Nervous system</subject><subject>Neurogenesis</subject><subject>Neuronal-glial interactions</subject><subject>Nucleotides</subject><subject>oligodendrocyte</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - metabolism</subject><subject>Phosphodiesterase</subject><subject>post‐translational modification</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Spinal cord</subject><subject>Structure-function relationships</subject><subject>Substrates</subject><subject>Transcription</subject><subject>Transfer RNA</subject><subject>tRNA Arg</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1qGzEUhUVJaBy3mz5AEWQTAuNKo5-ZWRqTOAHTQGnXQh7dMQoayZXGLbPLI-QZ8ySRYzeLLLq6HPg499x7EPpCyYwSUn7bOKtnJaek-oAmlDR1QSmTJ2hC6oYXlDf0DJ2n9EAIzaL6iM4Yl7IpGZugMF87PdjgceiwjhvrR_f8-DT8-D7PYxvDANbjIWqfOog6Ac4yOLsJBryJoR0HSNj2W21jwi34jDrsIf4Ju4TTmAbocT-Cs_51zSd02mmX4PNxTtGvm-ufi9tidb-8W8xXRctEVRVgGHABsmm0oFKuDUDNhGGdYKbiwhCuq4Y1vJQVN4yXILjs6o5KkLomEtgUXR588wm_d5AG1dvUgnPaQ06mSlFzQjkTJKMX79CHsIs-p1OlJDVlFSllpq4OVBtDShE6tY2213FUlKh9DWpfg3qtIcNfj5a7dQ_mDf339wzQA_DXOhj_Y6WWq7v5wfQFpfaVbA</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Palandri, Anabela</creator><creator>Bonnet, Laura Vanesa</creator><creator>Farias, Maria Gimena</creator><creator>Hallak, Marta Elena</creator><creator>Galiano, Mauricio Raul</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8245-1715</orcidid><orcidid>https://orcid.org/0000-0003-4856-879X</orcidid></search><sort><creationdate>202202</creationdate><title>Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination</title><author>Palandri, Anabela ; Bonnet, Laura Vanesa ; Farias, Maria Gimena ; Hallak, Marta Elena ; Galiano, Mauricio Raul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-ed3e45e699a5166bdee835d3f53d745d04a793942674d342e546f8f16e6a806e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Arginine - metabolism</topic><topic>arginylation</topic><topic>arginyltransferase 1</topic><topic>Cell migration</topic><topic>Cell proliferation</topic><topic>Central nervous system</topic><topic>Central Nervous System - metabolism</topic><topic>Corpus callosum</topic><topic>Cytoskeleton</topic><topic>Differentiation</topic><topic>Mice</topic><topic>Myelin</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelination</topic><topic>Nervous system</topic><topic>Neurogenesis</topic><topic>Neuronal-glial interactions</topic><topic>Nucleotides</topic><topic>oligodendrocyte</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - metabolism</topic><topic>Phosphodiesterase</topic><topic>post‐translational modification</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Spinal cord</topic><topic>Structure-function relationships</topic><topic>Substrates</topic><topic>Transcription</topic><topic>Transfer RNA</topic><topic>tRNA Arg</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palandri, Anabela</creatorcontrib><creatorcontrib>Bonnet, Laura Vanesa</creatorcontrib><creatorcontrib>Farias, Maria Gimena</creatorcontrib><creatorcontrib>Hallak, Marta Elena</creatorcontrib><creatorcontrib>Galiano, Mauricio Raul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palandri, Anabela</au><au>Bonnet, Laura Vanesa</au><au>Farias, Maria Gimena</au><au>Hallak, Marta Elena</au><au>Galiano, Mauricio Raul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2022-02</date><risdate>2022</risdate><volume>70</volume><issue>2</issue><spage>303</spage><epage>320</epage><pages>303-320</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Addition of arginine (Arg) from tRNA can cause major alterations of structure and function of protein substrates. This post‐translational modification, termed protein arginylation, is mediated by the enzyme arginyl‐tRNA‐protein transferase 1 (Ate1). Arginylation plays essential roles in a variety of cellular processes, including cell migration, apoptosis, and cytoskeletal organization. Ate1 is associated with neuronal functions such as neurogenesis and neurite growth. However, the role of Ate1 in glial development, including oligodendrocyte (OL) differentiation and myelination processes in the central nervous system, is poorly understood. The present study revealed a peak in Ate1 protein expression during myelination process in primary cultured OLs. Post‐transcriptional downregulation of Ate1 reduced the number of OL processes, and branching complexity, in vitro. We conditionally ablated Ate1 from OLs in mice using 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase‐Cre promoter (“Ate1‐KO” mice), to assess the role of Ate1 in OL function and axonal myelination in vivo. Immunostaining for OL differentiation markers revealed a notable reduction of mature OLs in corpus callosum of 14‐day‐old Ate1‐KO, but no changes in spinal cord, in comparison with wild‐type controls. Local proliferation of OL precursor cells was elevated in corpus callosum of 21‐day‐old Ate1‐KO, but was unchanged in spinal cord. Five‐month‐old Ate1‐KO displayed reductions of mature OL number and myelin thickness, with alterations of motor behaviors. Our findings, taken together, demonstrate that Ate1 helps maintain proper OL differentiation and myelination in corpus callosum in vivo, and that protein arginylation plays an essential role in developmental myelination.
MAIN POINTS:
Ate1 expression increases during myelination.
Ate1 is required for proper oligodendrocyte differentiation.
Ate1 contributes to efficient myelination and motor functions.
Ate1 affects actin cytoskeleton during CNS myelination.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>34669233</pmid><doi>10.1002/glia.24107</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8245-1715</orcidid><orcidid>https://orcid.org/0000-0003-4856-879X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2022-02, Vol.70 (2), p.303-320 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_proquest_miscellaneous_2584014350 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Ablation Animals Apoptosis Arginine - metabolism arginylation arginyltransferase 1 Cell migration Cell proliferation Central nervous system Central Nervous System - metabolism Corpus callosum Cytoskeleton Differentiation Mice Myelin Myelin Sheath - metabolism Myelination Nervous system Neurogenesis Neuronal-glial interactions Nucleotides oligodendrocyte Oligodendrocytes Oligodendroglia - metabolism Phosphodiesterase post‐translational modification Protein Processing, Post-Translational Protein structure Proteins Spinal cord Structure-function relationships Substrates Transcription Transfer RNA tRNA Arg |
title | Ablation of arginyl‐tRNA‐protein transferase in oligodendrocytes impairs central nervous system myelination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ablation%20of%20arginyl%E2%80%90tRNA%E2%80%90protein%20transferase%20in%20oligodendrocytes%20impairs%20central%20nervous%20system%20myelination&rft.jtitle=Glia&rft.au=Palandri,%20Anabela&rft.date=2022-02&rft.volume=70&rft.issue=2&rft.spage=303&rft.epage=320&rft.pages=303-320&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.24107&rft_dat=%3Cproquest_cross%3E2584014350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608137026&rft_id=info:pmid/34669233&rfr_iscdi=true |