NleB/SseK-catalyzed arginine-glycosylation and enteropathogen virulence are finely tuned by a single variable position contiguous to the catalytic machinery

NleB/SseK effectors are arginine-GlcNAc-transferases expressed by enteric bacterial pathogens that modify host cell proteins to disrupt signaling pathways. While the conserved Citrobacter rodentium NleB and E. coli NleB1 proteins display a broad selectivity towards host proteins, Salmonella enterica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2021-09, Vol.12 (36), p.12181-12191
Hauptverfasser: García-García, Ana, Hicks, Thomas, El Qaidi, Samir, Zhu, Congrui, Hardwidge, Philip R, Angulo, Jesús, Hurtado-Guerrero, Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12191
container_issue 36
container_start_page 12181
container_title Chemical science (Cambridge)
container_volume 12
creator García-García, Ana
Hicks, Thomas
El Qaidi, Samir
Zhu, Congrui
Hardwidge, Philip R
Angulo, Jesús
Hurtado-Guerrero, Ramon
description NleB/SseK effectors are arginine-GlcNAc-transferases expressed by enteric bacterial pathogens that modify host cell proteins to disrupt signaling pathways. While the conserved Citrobacter rodentium NleB and E. coli NleB1 proteins display a broad selectivity towards host proteins, Salmonella enterica SseK1, SseK2, and SseK3 have a narrowed protein substrate selectivity. Here, by combining computational and biophysical experiments, we demonstrate that the broad protein substrate selectivity of NleB relies on Tyr284 NleB/NleB1 , a second-shell residue contiguous to the catalytic machinery. Tyr284 NleB/NleB1 is important in coupling protein substrate binding to catalysis. This is exemplified by S286Y SseK1 and N302Y SseK2 mutants, which become active towards FADD and DR3 death domains, respectively, and whose kinetic properties match those of enterohemorrhagic E. coli NleB1. The integration of these mutants into S. enterica increases S. enterica survival in macrophages, suggesting that better enzymatic kinetic parameters lead to enhanced virulence. Our findings provide insights into how these enzymes finely tune arginine-glycosylation and, in turn, bacterial virulence. In addition, our data show how promiscuous glycosyltransferases preferentially glycosylate specific protein substrates. The NleB and SseK glycosyltransferases glycosylate arginine residues of mammalian proteins with different substrate specificities. We uncover that these differences rely on a particular second-shell residue contiguous to the catalytic machinery.
doi_str_mv 10.1039/d1sc04065k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2584011897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575076692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-70308cb39ed1cdc3a7bdc94091698ee7a2c18630a3d750adf817629b8dfe36193</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEolXphTvIEheEFGrHiR1fkGD5VCs4FM6WY0-yLl57sZ2V0t_SH4vpluXDF480z7wz49dV9ZjglwRTcWZI0rjFrPt-rzpucEtq1lFx_xA3-Kg6TekKl0Mp6Rr-sDqiLWO869vj6uazgzdnlwnOa62ycss1GKTiZL31UE9u0SEtTmUbPFLeIPAZYtiqvA4TeLSzcXbgNZQaQGOpcQvKsy8iw4IUStZPDtBORauGEmxDsrdaOvhspznMCeWA8hrQvn22Gm2UXheluDyqHozKJTi9u0-qb-_ffV19rC--fPi0en1R65aJXHNMca8HKsAQbTRVfDBatFgQJnoArhpNekaxooZ3WJmxJ5w1YujNCJQRQU-qV3vd7TxswOiyZFRObqPdqLjIoKz8N-PtWk5hJ_u245R3ReD5nUAMP2ZIWW5s0uCc8lBWlE15a0xIL3hBn_2HXoU5-rJeocp4nDHRFOrFntIxpBRhPAxDsPzlu3xLLle3vp8X-Onf4x_Q3y4X4MkeiEkfsn8-Dv0JWpO2wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575076692</pqid></control><display><type>article</type><title>NleB/SseK-catalyzed arginine-glycosylation and enteropathogen virulence are finely tuned by a single variable position contiguous to the catalytic machinery</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>García-García, Ana ; Hicks, Thomas ; El Qaidi, Samir ; Zhu, Congrui ; Hardwidge, Philip R ; Angulo, Jesús ; Hurtado-Guerrero, Ramon</creator><creatorcontrib>García-García, Ana ; Hicks, Thomas ; El Qaidi, Samir ; Zhu, Congrui ; Hardwidge, Philip R ; Angulo, Jesús ; Hurtado-Guerrero, Ramon</creatorcontrib><description>NleB/SseK effectors are arginine-GlcNAc-transferases expressed by enteric bacterial pathogens that modify host cell proteins to disrupt signaling pathways. While the conserved Citrobacter rodentium NleB and E. coli NleB1 proteins display a broad selectivity towards host proteins, Salmonella enterica SseK1, SseK2, and SseK3 have a narrowed protein substrate selectivity. Here, by combining computational and biophysical experiments, we demonstrate that the broad protein substrate selectivity of NleB relies on Tyr284 NleB/NleB1 , a second-shell residue contiguous to the catalytic machinery. Tyr284 NleB/NleB1 is important in coupling protein substrate binding to catalysis. This is exemplified by S286Y SseK1 and N302Y SseK2 mutants, which become active towards FADD and DR3 death domains, respectively, and whose kinetic properties match those of enterohemorrhagic E. coli NleB1. The integration of these mutants into S. enterica increases S. enterica survival in macrophages, suggesting that better enzymatic kinetic parameters lead to enhanced virulence. Our findings provide insights into how these enzymes finely tune arginine-glycosylation and, in turn, bacterial virulence. In addition, our data show how promiscuous glycosyltransferases preferentially glycosylate specific protein substrates. The NleB and SseK glycosyltransferases glycosylate arginine residues of mammalian proteins with different substrate specificities. We uncover that these differences rely on a particular second-shell residue contiguous to the catalytic machinery.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d1sc04065k</identifier><identifier>PMID: 34667584</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysis ; Chemistry ; Citrobacter ; E coli ; Glycosylation ; Macrophages ; Proteins ; Salmonella ; Selectivity ; Substrates ; Virulence</subject><ispartof>Chemical science (Cambridge), 2021-09, Vol.12 (36), p.12181-12191</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-70308cb39ed1cdc3a7bdc94091698ee7a2c18630a3d750adf817629b8dfe36193</citedby><cites>FETCH-LOGICAL-c469t-70308cb39ed1cdc3a7bdc94091698ee7a2c18630a3d750adf817629b8dfe36193</cites><orcidid>0000-0002-3122-9401 ; 0000-0001-7250-5639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457375/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457375/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34667584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García-García, Ana</creatorcontrib><creatorcontrib>Hicks, Thomas</creatorcontrib><creatorcontrib>El Qaidi, Samir</creatorcontrib><creatorcontrib>Zhu, Congrui</creatorcontrib><creatorcontrib>Hardwidge, Philip R</creatorcontrib><creatorcontrib>Angulo, Jesús</creatorcontrib><creatorcontrib>Hurtado-Guerrero, Ramon</creatorcontrib><title>NleB/SseK-catalyzed arginine-glycosylation and enteropathogen virulence are finely tuned by a single variable position contiguous to the catalytic machinery</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>NleB/SseK effectors are arginine-GlcNAc-transferases expressed by enteric bacterial pathogens that modify host cell proteins to disrupt signaling pathways. While the conserved Citrobacter rodentium NleB and E. coli NleB1 proteins display a broad selectivity towards host proteins, Salmonella enterica SseK1, SseK2, and SseK3 have a narrowed protein substrate selectivity. Here, by combining computational and biophysical experiments, we demonstrate that the broad protein substrate selectivity of NleB relies on Tyr284 NleB/NleB1 , a second-shell residue contiguous to the catalytic machinery. Tyr284 NleB/NleB1 is important in coupling protein substrate binding to catalysis. This is exemplified by S286Y SseK1 and N302Y SseK2 mutants, which become active towards FADD and DR3 death domains, respectively, and whose kinetic properties match those of enterohemorrhagic E. coli NleB1. The integration of these mutants into S. enterica increases S. enterica survival in macrophages, suggesting that better enzymatic kinetic parameters lead to enhanced virulence. Our findings provide insights into how these enzymes finely tune arginine-glycosylation and, in turn, bacterial virulence. In addition, our data show how promiscuous glycosyltransferases preferentially glycosylate specific protein substrates. The NleB and SseK glycosyltransferases glycosylate arginine residues of mammalian proteins with different substrate specificities. We uncover that these differences rely on a particular second-shell residue contiguous to the catalytic machinery.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>Citrobacter</subject><subject>E coli</subject><subject>Glycosylation</subject><subject>Macrophages</subject><subject>Proteins</subject><subject>Salmonella</subject><subject>Selectivity</subject><subject>Substrates</subject><subject>Virulence</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkk1v1DAQhiMEolXphTvIEheEFGrHiR1fkGD5VCs4FM6WY0-yLl57sZ2V0t_SH4vpluXDF480z7wz49dV9ZjglwRTcWZI0rjFrPt-rzpucEtq1lFx_xA3-Kg6TekKl0Mp6Rr-sDqiLWO869vj6uazgzdnlwnOa62ycss1GKTiZL31UE9u0SEtTmUbPFLeIPAZYtiqvA4TeLSzcXbgNZQaQGOpcQvKsy8iw4IUStZPDtBORauGEmxDsrdaOvhspznMCeWA8hrQvn22Gm2UXheluDyqHozKJTi9u0-qb-_ffV19rC--fPi0en1R65aJXHNMca8HKsAQbTRVfDBatFgQJnoArhpNekaxooZ3WJmxJ5w1YujNCJQRQU-qV3vd7TxswOiyZFRObqPdqLjIoKz8N-PtWk5hJ_u245R3ReD5nUAMP2ZIWW5s0uCc8lBWlE15a0xIL3hBn_2HXoU5-rJeocp4nDHRFOrFntIxpBRhPAxDsPzlu3xLLle3vp8X-Onf4x_Q3y4X4MkeiEkfsn8-Dv0JWpO2wg</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>García-García, Ana</creator><creator>Hicks, Thomas</creator><creator>El Qaidi, Samir</creator><creator>Zhu, Congrui</creator><creator>Hardwidge, Philip R</creator><creator>Angulo, Jesús</creator><creator>Hurtado-Guerrero, Ramon</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3122-9401</orcidid><orcidid>https://orcid.org/0000-0001-7250-5639</orcidid></search><sort><creationdate>20210922</creationdate><title>NleB/SseK-catalyzed arginine-glycosylation and enteropathogen virulence are finely tuned by a single variable position contiguous to the catalytic machinery</title><author>García-García, Ana ; Hicks, Thomas ; El Qaidi, Samir ; Zhu, Congrui ; Hardwidge, Philip R ; Angulo, Jesús ; Hurtado-Guerrero, Ramon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-70308cb39ed1cdc3a7bdc94091698ee7a2c18630a3d750adf817629b8dfe36193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>Citrobacter</topic><topic>E coli</topic><topic>Glycosylation</topic><topic>Macrophages</topic><topic>Proteins</topic><topic>Salmonella</topic><topic>Selectivity</topic><topic>Substrates</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-García, Ana</creatorcontrib><creatorcontrib>Hicks, Thomas</creatorcontrib><creatorcontrib>El Qaidi, Samir</creatorcontrib><creatorcontrib>Zhu, Congrui</creatorcontrib><creatorcontrib>Hardwidge, Philip R</creatorcontrib><creatorcontrib>Angulo, Jesús</creatorcontrib><creatorcontrib>Hurtado-Guerrero, Ramon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-García, Ana</au><au>Hicks, Thomas</au><au>El Qaidi, Samir</au><au>Zhu, Congrui</au><au>Hardwidge, Philip R</au><au>Angulo, Jesús</au><au>Hurtado-Guerrero, Ramon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NleB/SseK-catalyzed arginine-glycosylation and enteropathogen virulence are finely tuned by a single variable position contiguous to the catalytic machinery</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2021-09-22</date><risdate>2021</risdate><volume>12</volume><issue>36</issue><spage>12181</spage><epage>12191</epage><pages>12181-12191</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>NleB/SseK effectors are arginine-GlcNAc-transferases expressed by enteric bacterial pathogens that modify host cell proteins to disrupt signaling pathways. While the conserved Citrobacter rodentium NleB and E. coli NleB1 proteins display a broad selectivity towards host proteins, Salmonella enterica SseK1, SseK2, and SseK3 have a narrowed protein substrate selectivity. Here, by combining computational and biophysical experiments, we demonstrate that the broad protein substrate selectivity of NleB relies on Tyr284 NleB/NleB1 , a second-shell residue contiguous to the catalytic machinery. Tyr284 NleB/NleB1 is important in coupling protein substrate binding to catalysis. This is exemplified by S286Y SseK1 and N302Y SseK2 mutants, which become active towards FADD and DR3 death domains, respectively, and whose kinetic properties match those of enterohemorrhagic E. coli NleB1. The integration of these mutants into S. enterica increases S. enterica survival in macrophages, suggesting that better enzymatic kinetic parameters lead to enhanced virulence. Our findings provide insights into how these enzymes finely tune arginine-glycosylation and, in turn, bacterial virulence. In addition, our data show how promiscuous glycosyltransferases preferentially glycosylate specific protein substrates. The NleB and SseK glycosyltransferases glycosylate arginine residues of mammalian proteins with different substrate specificities. We uncover that these differences rely on a particular second-shell residue contiguous to the catalytic machinery.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34667584</pmid><doi>10.1039/d1sc04065k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3122-9401</orcidid><orcidid>https://orcid.org/0000-0001-7250-5639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2021-09, Vol.12 (36), p.12181-12191
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_miscellaneous_2584011897
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Catalysis
Chemistry
Citrobacter
E coli
Glycosylation
Macrophages
Proteins
Salmonella
Selectivity
Substrates
Virulence
title NleB/SseK-catalyzed arginine-glycosylation and enteropathogen virulence are finely tuned by a single variable position contiguous to the catalytic machinery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NleB/SseK-catalyzed%20arginine-glycosylation%20and%20enteropathogen%20virulence%20are%20finely%20tuned%20by%20a%20single%20variable%20position%20contiguous%20to%20the%20catalytic%20machinery&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Garc%C3%ADa-Garc%C3%ADa,%20Ana&rft.date=2021-09-22&rft.volume=12&rft.issue=36&rft.spage=12181&rft.epage=12191&rft.pages=12181-12191&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d1sc04065k&rft_dat=%3Cproquest_pubme%3E2575076692%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575076692&rft_id=info:pmid/34667584&rfr_iscdi=true