Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL
Key message YrFDC12 and PbcFDC , co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2022, Vol.135 (1), p.351-365 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | 1 |
container_start_page | 351 |
container_title | Theoretical and applied genetics |
container_volume | 135 |
creator | Liu, Shengjie Wang, Xiaoting Zhang, Yayun Jin, Yangang Xia, Zhonghua Xiang, Mingjie Huang, Shuo Qiao, Linyi Zheng, Weijun Zeng, Qingdong Wang, Qilin Yu, Rui Singh, Ravi P. Bhavani, Sridhar Kang, Zhensheng Han, Dejun Wang, Changfa Wu, Jianhui |
description | Key message
YrFDC12
and
PbcFDC
, co-segregated in chromosome 4BL, and significantly interacted with
Yr30/Pbc1
to enhance stripe rust resistance and to promote pseudo-black chaff development.
Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only
QYr.nwafu-3BS
from RH520 and
QYr.nwafu-4BL.2
(named
YrFDC12
for convenience) from FDC12 were consistent across the four testing environments.
QYr.nwafu-3BS
is likely the pleiotropic resistance gene
Sr2/Yr30
.
YrFDC12
was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers
AX-111121224
and
AX-89518393
. Lines harboring both
Yr30
and
YrFDC12
displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci
Pbc1
and
PbcFDC12,
which co-segregated with
Yr30
and
YrFDC12
, respectively. Both marker-based and pedigree-based kinship analyses revealed that
YrFDC12
was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the
YrFDC12
haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding. |
doi_str_mv | 10.1007/s00122-021-03970-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2583442748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689033102</galeid><sourcerecordid>A689033102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-9e6101b91e7e051be775b0bfe7add21e6b76d8a5cebea52156d72e052096ec953</originalsourceid><addsrcrecordid>eNp9kl9rFDEUxQdR7Fr9Aj5IwBcFp95k8mfnsZa2FhZErQ8-hWTmzm7KTrJNMtj99mbdalkRycOFe3_ncG84VfWSwgkFUO8TAGWsBkZraFoFNX9UzShvWM0YZ4-rGQCHWijBjqpnKd0AABPQPK2OGi6lYFLMqrtzvzK-w56kHN0GSZxSJhGTS3nXJ8Fm43yZ2y3pwmidd35JvscGyA-XV8SU0uN6S3qXNhgT9u8K53d69Jl8vl6Q4Em3imEMKYxITBwJ_7B4Xj0ZzDrhi_t6XH27OL8--1gvPl1enZ0u6o4rmesWJQVqW4oKQVCLSgkLdkBl-p5RlFbJfm5EhxaNYFTIXrFCMmgldq1ojqs3e99NDLcTpqxHlzpcr43HMCXNxLzhnCk-L-jrv9CbMEVfttNMUiVa1grxQC3NGrXzQ8jRdDtTfSrnLTQNBVaok39Q5fU4uvI_OLjSPxC8PRAUJuNdXpopJX319cshy_ZsF0NKEQe9iW40casp6F009D4aukRD_4qG5kX06v66yY7Y_5H8zkIBmj2QysgvMT6c_x_bn55owSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617592955</pqid></control><display><type>article</type><title>Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Liu, Shengjie ; Wang, Xiaoting ; Zhang, Yayun ; Jin, Yangang ; Xia, Zhonghua ; Xiang, Mingjie ; Huang, Shuo ; Qiao, Linyi ; Zheng, Weijun ; Zeng, Qingdong ; Wang, Qilin ; Yu, Rui ; Singh, Ravi P. ; Bhavani, Sridhar ; Kang, Zhensheng ; Han, Dejun ; Wang, Changfa ; Wu, Jianhui</creator><creatorcontrib>Liu, Shengjie ; Wang, Xiaoting ; Zhang, Yayun ; Jin, Yangang ; Xia, Zhonghua ; Xiang, Mingjie ; Huang, Shuo ; Qiao, Linyi ; Zheng, Weijun ; Zeng, Qingdong ; Wang, Qilin ; Yu, Rui ; Singh, Ravi P. ; Bhavani, Sridhar ; Kang, Zhensheng ; Han, Dejun ; Wang, Changfa ; Wu, Jianhui</creatorcontrib><description>Key message
YrFDC12
and
PbcFDC
, co-segregated in chromosome 4BL, and significantly interacted with
Yr30/Pbc1
to enhance stripe rust resistance and to promote pseudo-black chaff development.
Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only
QYr.nwafu-3BS
from RH520 and
QYr.nwafu-4BL.2
(named
YrFDC12
for convenience) from FDC12 were consistent across the four testing environments.
QYr.nwafu-3BS
is likely the pleiotropic resistance gene
Sr2/Yr30
.
YrFDC12
was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers
AX-111121224
and
AX-89518393
. Lines harboring both
Yr30
and
YrFDC12
displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci
Pbc1
and
PbcFDC12,
which co-segregated with
Yr30
and
YrFDC12
, respectively. Both marker-based and pedigree-based kinship analyses revealed that
YrFDC12
was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the
YrFDC12
haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-021-03970-4</identifier><identifier>PMID: 34665265</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome Mapping ; Chromosomes ; Chromosomes, Plant ; Control ; Cultivars ; Disease Resistance - genetics ; Diseases and pests ; Gene mapping ; Genes, Plant ; Genetic aspects ; Genotyping ; Genotyping Techniques ; Haplotypes ; Inbreeding ; Life Sciences ; Methods ; Original Article ; Plant Biochemistry ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant immunology ; Plant resistance ; Puccinia - immunology ; Puccinia - physiology ; Quantitative Trait Loci ; Rust diseases ; Single-nucleotide polymorphism ; Stripe rust ; Triticum - genetics ; Triticum - immunology ; Triticum - microbiology ; Wheat</subject><ispartof>Theoretical and applied genetics, 2022, Vol.135 (1), p.351-365</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-9e6101b91e7e051be775b0bfe7add21e6b76d8a5cebea52156d72e052096ec953</citedby><cites>FETCH-LOGICAL-c476t-9e6101b91e7e051be775b0bfe7add21e6b76d8a5cebea52156d72e052096ec953</cites><orcidid>0000-0001-8154-1199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-021-03970-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-021-03970-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34665265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shengjie</creatorcontrib><creatorcontrib>Wang, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Yayun</creatorcontrib><creatorcontrib>Jin, Yangang</creatorcontrib><creatorcontrib>Xia, Zhonghua</creatorcontrib><creatorcontrib>Xiang, Mingjie</creatorcontrib><creatorcontrib>Huang, Shuo</creatorcontrib><creatorcontrib>Qiao, Linyi</creatorcontrib><creatorcontrib>Zheng, Weijun</creatorcontrib><creatorcontrib>Zeng, Qingdong</creatorcontrib><creatorcontrib>Wang, Qilin</creatorcontrib><creatorcontrib>Yu, Rui</creatorcontrib><creatorcontrib>Singh, Ravi P.</creatorcontrib><creatorcontrib>Bhavani, Sridhar</creatorcontrib><creatorcontrib>Kang, Zhensheng</creatorcontrib><creatorcontrib>Han, Dejun</creatorcontrib><creatorcontrib>Wang, Changfa</creatorcontrib><creatorcontrib>Wu, Jianhui</creatorcontrib><title>Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
YrFDC12
and
PbcFDC
, co-segregated in chromosome 4BL, and significantly interacted with
Yr30/Pbc1
to enhance stripe rust resistance and to promote pseudo-black chaff development.
Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only
QYr.nwafu-3BS
from RH520 and
QYr.nwafu-4BL.2
(named
YrFDC12
for convenience) from FDC12 were consistent across the four testing environments.
QYr.nwafu-3BS
is likely the pleiotropic resistance gene
Sr2/Yr30
.
YrFDC12
was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers
AX-111121224
and
AX-89518393
. Lines harboring both
Yr30
and
YrFDC12
displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci
Pbc1
and
PbcFDC12,
which co-segregated with
Yr30
and
YrFDC12
, respectively. Both marker-based and pedigree-based kinship analyses revealed that
YrFDC12
was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the
YrFDC12
haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant</subject><subject>Control</subject><subject>Cultivars</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>Gene mapping</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genotyping</subject><subject>Genotyping Techniques</subject><subject>Haplotypes</subject><subject>Inbreeding</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant immunology</subject><subject>Plant resistance</subject><subject>Puccinia - immunology</subject><subject>Puccinia - physiology</subject><subject>Quantitative Trait Loci</subject><subject>Rust diseases</subject><subject>Single-nucleotide polymorphism</subject><subject>Stripe rust</subject><subject>Triticum - genetics</subject><subject>Triticum - immunology</subject><subject>Triticum - microbiology</subject><subject>Wheat</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl9rFDEUxQdR7Fr9Aj5IwBcFp95k8mfnsZa2FhZErQ8-hWTmzm7KTrJNMtj99mbdalkRycOFe3_ncG84VfWSwgkFUO8TAGWsBkZraFoFNX9UzShvWM0YZ4-rGQCHWijBjqpnKd0AABPQPK2OGi6lYFLMqrtzvzK-w56kHN0GSZxSJhGTS3nXJ8Fm43yZ2y3pwmidd35JvscGyA-XV8SU0uN6S3qXNhgT9u8K53d69Jl8vl6Q4Em3imEMKYxITBwJ_7B4Xj0ZzDrhi_t6XH27OL8--1gvPl1enZ0u6o4rmesWJQVqW4oKQVCLSgkLdkBl-p5RlFbJfm5EhxaNYFTIXrFCMmgldq1ojqs3e99NDLcTpqxHlzpcr43HMCXNxLzhnCk-L-jrv9CbMEVfttNMUiVa1grxQC3NGrXzQ8jRdDtTfSrnLTQNBVaok39Q5fU4uvI_OLjSPxC8PRAUJuNdXpopJX319cshy_ZsF0NKEQe9iW40casp6F009D4aukRD_4qG5kX06v66yY7Y_5H8zkIBmj2QysgvMT6c_x_bn55owSU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Shengjie</creator><creator>Wang, Xiaoting</creator><creator>Zhang, Yayun</creator><creator>Jin, Yangang</creator><creator>Xia, Zhonghua</creator><creator>Xiang, Mingjie</creator><creator>Huang, Shuo</creator><creator>Qiao, Linyi</creator><creator>Zheng, Weijun</creator><creator>Zeng, Qingdong</creator><creator>Wang, Qilin</creator><creator>Yu, Rui</creator><creator>Singh, Ravi P.</creator><creator>Bhavani, Sridhar</creator><creator>Kang, Zhensheng</creator><creator>Han, Dejun</creator><creator>Wang, Changfa</creator><creator>Wu, Jianhui</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8154-1199</orcidid></search><sort><creationdate>2022</creationdate><title>Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL</title><author>Liu, Shengjie ; Wang, Xiaoting ; Zhang, Yayun ; Jin, Yangang ; Xia, Zhonghua ; Xiang, Mingjie ; Huang, Shuo ; Qiao, Linyi ; Zheng, Weijun ; Zeng, Qingdong ; Wang, Qilin ; Yu, Rui ; Singh, Ravi P. ; Bhavani, Sridhar ; Kang, Zhensheng ; Han, Dejun ; Wang, Changfa ; Wu, Jianhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-9e6101b91e7e051be775b0bfe7add21e6b76d8a5cebea52156d72e052096ec953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant</topic><topic>Control</topic><topic>Cultivars</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>Gene mapping</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genotyping</topic><topic>Genotyping Techniques</topic><topic>Haplotypes</topic><topic>Inbreeding</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant immunology</topic><topic>Plant resistance</topic><topic>Puccinia - immunology</topic><topic>Puccinia - physiology</topic><topic>Quantitative Trait Loci</topic><topic>Rust diseases</topic><topic>Single-nucleotide polymorphism</topic><topic>Stripe rust</topic><topic>Triticum - genetics</topic><topic>Triticum - immunology</topic><topic>Triticum - microbiology</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shengjie</creatorcontrib><creatorcontrib>Wang, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Yayun</creatorcontrib><creatorcontrib>Jin, Yangang</creatorcontrib><creatorcontrib>Xia, Zhonghua</creatorcontrib><creatorcontrib>Xiang, Mingjie</creatorcontrib><creatorcontrib>Huang, Shuo</creatorcontrib><creatorcontrib>Qiao, Linyi</creatorcontrib><creatorcontrib>Zheng, Weijun</creatorcontrib><creatorcontrib>Zeng, Qingdong</creatorcontrib><creatorcontrib>Wang, Qilin</creatorcontrib><creatorcontrib>Yu, Rui</creatorcontrib><creatorcontrib>Singh, Ravi P.</creatorcontrib><creatorcontrib>Bhavani, Sridhar</creatorcontrib><creatorcontrib>Kang, Zhensheng</creatorcontrib><creatorcontrib>Han, Dejun</creatorcontrib><creatorcontrib>Wang, Changfa</creatorcontrib><creatorcontrib>Wu, Jianhui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shengjie</au><au>Wang, Xiaoting</au><au>Zhang, Yayun</au><au>Jin, Yangang</au><au>Xia, Zhonghua</au><au>Xiang, Mingjie</au><au>Huang, Shuo</au><au>Qiao, Linyi</au><au>Zheng, Weijun</au><au>Zeng, Qingdong</au><au>Wang, Qilin</au><au>Yu, Rui</au><au>Singh, Ravi P.</au><au>Bhavani, Sridhar</au><au>Kang, Zhensheng</au><au>Han, Dejun</au><au>Wang, Changfa</au><au>Wu, Jianhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022</date><risdate>2022</risdate><volume>135</volume><issue>1</issue><spage>351</spage><epage>365</epage><pages>351-365</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
YrFDC12
and
PbcFDC
, co-segregated in chromosome 4BL, and significantly interacted with
Yr30/Pbc1
to enhance stripe rust resistance and to promote pseudo-black chaff development.
Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only
QYr.nwafu-3BS
from RH520 and
QYr.nwafu-4BL.2
(named
YrFDC12
for convenience) from FDC12 were consistent across the four testing environments.
QYr.nwafu-3BS
is likely the pleiotropic resistance gene
Sr2/Yr30
.
YrFDC12
was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers
AX-111121224
and
AX-89518393
. Lines harboring both
Yr30
and
YrFDC12
displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci
Pbc1
and
PbcFDC12,
which co-segregated with
Yr30
and
YrFDC12
, respectively. Both marker-based and pedigree-based kinship analyses revealed that
YrFDC12
was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the
YrFDC12
haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34665265</pmid><doi>10.1007/s00122-021-03970-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8154-1199</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2022, Vol.135 (1), p.351-365 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2583442748 |
source | MEDLINE; SpringerLink Journals |
subjects | Agricultural research Agriculture Biochemistry Biomedical and Life Sciences Biotechnology Chromosome Mapping Chromosomes Chromosomes, Plant Control Cultivars Disease Resistance - genetics Diseases and pests Gene mapping Genes, Plant Genetic aspects Genotyping Genotyping Techniques Haplotypes Inbreeding Life Sciences Methods Original Article Plant Biochemistry Plant breeding Plant Breeding/Biotechnology Plant Diseases - genetics Plant Diseases - immunology Plant Diseases - microbiology Plant Genetics and Genomics Plant immunology Plant resistance Puccinia - immunology Puccinia - physiology Quantitative Trait Loci Rust diseases Single-nucleotide polymorphism Stripe rust Triticum - genetics Triticum - immunology Triticum - microbiology Wheat |
title | Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20stripe%20rust%20resistance%20obtained%20by%20combining%20Yr30%20with%20a%20widely%20dispersed,%20consistent%20QTL%20on%20chromosome%20arm%204BL&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Liu,%20Shengjie&rft.date=2022&rft.volume=135&rft.issue=1&rft.spage=351&rft.epage=365&rft.pages=351-365&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-021-03970-4&rft_dat=%3Cgale_proqu%3EA689033102%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617592955&rft_id=info:pmid/34665265&rft_galeid=A689033102&rfr_iscdi=true |