Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL

Key message YrFDC12 and PbcFDC , co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2022, Vol.135 (1), p.351-365
Hauptverfasser: Liu, Shengjie, Wang, Xiaoting, Zhang, Yayun, Jin, Yangang, Xia, Zhonghua, Xiang, Mingjie, Huang, Shuo, Qiao, Linyi, Zheng, Weijun, Zeng, Qingdong, Wang, Qilin, Yu, Rui, Singh, Ravi P., Bhavani, Sridhar, Kang, Zhensheng, Han, Dejun, Wang, Changfa, Wu, Jianhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue 1
container_start_page 351
container_title Theoretical and applied genetics
container_volume 135
creator Liu, Shengjie
Wang, Xiaoting
Zhang, Yayun
Jin, Yangang
Xia, Zhonghua
Xiang, Mingjie
Huang, Shuo
Qiao, Linyi
Zheng, Weijun
Zeng, Qingdong
Wang, Qilin
Yu, Rui
Singh, Ravi P.
Bhavani, Sridhar
Kang, Zhensheng
Han, Dejun
Wang, Changfa
Wu, Jianhui
description Key message YrFDC12 and PbcFDC , co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only QYr.nwafu-3BS from RH520 and QYr.nwafu-4BL.2 (named YrFDC12 for convenience) from FDC12 were consistent across the four testing environments. QYr.nwafu-3BS is likely the pleiotropic resistance gene Sr2/Yr30 . YrFDC12 was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers AX-111121224 and AX-89518393 . Lines harboring both Yr30 and YrFDC12 displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci Pbc1 and PbcFDC12, which co-segregated with Yr30 and YrFDC12 , respectively. Both marker-based and pedigree-based kinship analyses revealed that YrFDC12 was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the YrFDC12 haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.
doi_str_mv 10.1007/s00122-021-03970-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2583442748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689033102</galeid><sourcerecordid>A689033102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-9e6101b91e7e051be775b0bfe7add21e6b76d8a5cebea52156d72e052096ec953</originalsourceid><addsrcrecordid>eNp9kl9rFDEUxQdR7Fr9Aj5IwBcFp95k8mfnsZa2FhZErQ8-hWTmzm7KTrJNMtj99mbdalkRycOFe3_ncG84VfWSwgkFUO8TAGWsBkZraFoFNX9UzShvWM0YZ4-rGQCHWijBjqpnKd0AABPQPK2OGi6lYFLMqrtzvzK-w56kHN0GSZxSJhGTS3nXJ8Fm43yZ2y3pwmidd35JvscGyA-XV8SU0uN6S3qXNhgT9u8K53d69Jl8vl6Q4Em3imEMKYxITBwJ_7B4Xj0ZzDrhi_t6XH27OL8--1gvPl1enZ0u6o4rmesWJQVqW4oKQVCLSgkLdkBl-p5RlFbJfm5EhxaNYFTIXrFCMmgldq1ojqs3e99NDLcTpqxHlzpcr43HMCXNxLzhnCk-L-jrv9CbMEVfttNMUiVa1grxQC3NGrXzQ8jRdDtTfSrnLTQNBVaok39Q5fU4uvI_OLjSPxC8PRAUJuNdXpopJX319cshy_ZsF0NKEQe9iW40casp6F009D4aukRD_4qG5kX06v66yY7Y_5H8zkIBmj2QysgvMT6c_x_bn55owSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617592955</pqid></control><display><type>article</type><title>Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Liu, Shengjie ; Wang, Xiaoting ; Zhang, Yayun ; Jin, Yangang ; Xia, Zhonghua ; Xiang, Mingjie ; Huang, Shuo ; Qiao, Linyi ; Zheng, Weijun ; Zeng, Qingdong ; Wang, Qilin ; Yu, Rui ; Singh, Ravi P. ; Bhavani, Sridhar ; Kang, Zhensheng ; Han, Dejun ; Wang, Changfa ; Wu, Jianhui</creator><creatorcontrib>Liu, Shengjie ; Wang, Xiaoting ; Zhang, Yayun ; Jin, Yangang ; Xia, Zhonghua ; Xiang, Mingjie ; Huang, Shuo ; Qiao, Linyi ; Zheng, Weijun ; Zeng, Qingdong ; Wang, Qilin ; Yu, Rui ; Singh, Ravi P. ; Bhavani, Sridhar ; Kang, Zhensheng ; Han, Dejun ; Wang, Changfa ; Wu, Jianhui</creatorcontrib><description>Key message YrFDC12 and PbcFDC , co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only QYr.nwafu-3BS from RH520 and QYr.nwafu-4BL.2 (named YrFDC12 for convenience) from FDC12 were consistent across the four testing environments. QYr.nwafu-3BS is likely the pleiotropic resistance gene Sr2/Yr30 . YrFDC12 was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers AX-111121224 and AX-89518393 . Lines harboring both Yr30 and YrFDC12 displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci Pbc1 and PbcFDC12, which co-segregated with Yr30 and YrFDC12 , respectively. Both marker-based and pedigree-based kinship analyses revealed that YrFDC12 was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the YrFDC12 haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-021-03970-4</identifier><identifier>PMID: 34665265</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome Mapping ; Chromosomes ; Chromosomes, Plant ; Control ; Cultivars ; Disease Resistance - genetics ; Diseases and pests ; Gene mapping ; Genes, Plant ; Genetic aspects ; Genotyping ; Genotyping Techniques ; Haplotypes ; Inbreeding ; Life Sciences ; Methods ; Original Article ; Plant Biochemistry ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant immunology ; Plant resistance ; Puccinia - immunology ; Puccinia - physiology ; Quantitative Trait Loci ; Rust diseases ; Single-nucleotide polymorphism ; Stripe rust ; Triticum - genetics ; Triticum - immunology ; Triticum - microbiology ; Wheat</subject><ispartof>Theoretical and applied genetics, 2022, Vol.135 (1), p.351-365</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-9e6101b91e7e051be775b0bfe7add21e6b76d8a5cebea52156d72e052096ec953</citedby><cites>FETCH-LOGICAL-c476t-9e6101b91e7e051be775b0bfe7add21e6b76d8a5cebea52156d72e052096ec953</cites><orcidid>0000-0001-8154-1199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-021-03970-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-021-03970-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34665265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shengjie</creatorcontrib><creatorcontrib>Wang, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Yayun</creatorcontrib><creatorcontrib>Jin, Yangang</creatorcontrib><creatorcontrib>Xia, Zhonghua</creatorcontrib><creatorcontrib>Xiang, Mingjie</creatorcontrib><creatorcontrib>Huang, Shuo</creatorcontrib><creatorcontrib>Qiao, Linyi</creatorcontrib><creatorcontrib>Zheng, Weijun</creatorcontrib><creatorcontrib>Zeng, Qingdong</creatorcontrib><creatorcontrib>Wang, Qilin</creatorcontrib><creatorcontrib>Yu, Rui</creatorcontrib><creatorcontrib>Singh, Ravi P.</creatorcontrib><creatorcontrib>Bhavani, Sridhar</creatorcontrib><creatorcontrib>Kang, Zhensheng</creatorcontrib><creatorcontrib>Han, Dejun</creatorcontrib><creatorcontrib>Wang, Changfa</creatorcontrib><creatorcontrib>Wu, Jianhui</creatorcontrib><title>Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message YrFDC12 and PbcFDC , co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only QYr.nwafu-3BS from RH520 and QYr.nwafu-4BL.2 (named YrFDC12 for convenience) from FDC12 were consistent across the four testing environments. QYr.nwafu-3BS is likely the pleiotropic resistance gene Sr2/Yr30 . YrFDC12 was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers AX-111121224 and AX-89518393 . Lines harboring both Yr30 and YrFDC12 displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci Pbc1 and PbcFDC12, which co-segregated with Yr30 and YrFDC12 , respectively. Both marker-based and pedigree-based kinship analyses revealed that YrFDC12 was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the YrFDC12 haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant</subject><subject>Control</subject><subject>Cultivars</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>Gene mapping</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genotyping</subject><subject>Genotyping Techniques</subject><subject>Haplotypes</subject><subject>Inbreeding</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant immunology</subject><subject>Plant resistance</subject><subject>Puccinia - immunology</subject><subject>Puccinia - physiology</subject><subject>Quantitative Trait Loci</subject><subject>Rust diseases</subject><subject>Single-nucleotide polymorphism</subject><subject>Stripe rust</subject><subject>Triticum - genetics</subject><subject>Triticum - immunology</subject><subject>Triticum - microbiology</subject><subject>Wheat</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl9rFDEUxQdR7Fr9Aj5IwBcFp95k8mfnsZa2FhZErQ8-hWTmzm7KTrJNMtj99mbdalkRycOFe3_ncG84VfWSwgkFUO8TAGWsBkZraFoFNX9UzShvWM0YZ4-rGQCHWijBjqpnKd0AABPQPK2OGi6lYFLMqrtzvzK-w56kHN0GSZxSJhGTS3nXJ8Fm43yZ2y3pwmidd35JvscGyA-XV8SU0uN6S3qXNhgT9u8K53d69Jl8vl6Q4Em3imEMKYxITBwJ_7B4Xj0ZzDrhi_t6XH27OL8--1gvPl1enZ0u6o4rmesWJQVqW4oKQVCLSgkLdkBl-p5RlFbJfm5EhxaNYFTIXrFCMmgldq1ojqs3e99NDLcTpqxHlzpcr43HMCXNxLzhnCk-L-jrv9CbMEVfttNMUiVa1grxQC3NGrXzQ8jRdDtTfSrnLTQNBVaok39Q5fU4uvI_OLjSPxC8PRAUJuNdXpopJX319cshy_ZsF0NKEQe9iW40casp6F009D4aukRD_4qG5kX06v66yY7Y_5H8zkIBmj2QysgvMT6c_x_bn55owSU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Shengjie</creator><creator>Wang, Xiaoting</creator><creator>Zhang, Yayun</creator><creator>Jin, Yangang</creator><creator>Xia, Zhonghua</creator><creator>Xiang, Mingjie</creator><creator>Huang, Shuo</creator><creator>Qiao, Linyi</creator><creator>Zheng, Weijun</creator><creator>Zeng, Qingdong</creator><creator>Wang, Qilin</creator><creator>Yu, Rui</creator><creator>Singh, Ravi P.</creator><creator>Bhavani, Sridhar</creator><creator>Kang, Zhensheng</creator><creator>Han, Dejun</creator><creator>Wang, Changfa</creator><creator>Wu, Jianhui</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8154-1199</orcidid></search><sort><creationdate>2022</creationdate><title>Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL</title><author>Liu, Shengjie ; Wang, Xiaoting ; Zhang, Yayun ; Jin, Yangang ; Xia, Zhonghua ; Xiang, Mingjie ; Huang, Shuo ; Qiao, Linyi ; Zheng, Weijun ; Zeng, Qingdong ; Wang, Qilin ; Yu, Rui ; Singh, Ravi P. ; Bhavani, Sridhar ; Kang, Zhensheng ; Han, Dejun ; Wang, Changfa ; Wu, Jianhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-9e6101b91e7e051be775b0bfe7add21e6b76d8a5cebea52156d72e052096ec953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant</topic><topic>Control</topic><topic>Cultivars</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>Gene mapping</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genotyping</topic><topic>Genotyping Techniques</topic><topic>Haplotypes</topic><topic>Inbreeding</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant immunology</topic><topic>Plant resistance</topic><topic>Puccinia - immunology</topic><topic>Puccinia - physiology</topic><topic>Quantitative Trait Loci</topic><topic>Rust diseases</topic><topic>Single-nucleotide polymorphism</topic><topic>Stripe rust</topic><topic>Triticum - genetics</topic><topic>Triticum - immunology</topic><topic>Triticum - microbiology</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shengjie</creatorcontrib><creatorcontrib>Wang, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Yayun</creatorcontrib><creatorcontrib>Jin, Yangang</creatorcontrib><creatorcontrib>Xia, Zhonghua</creatorcontrib><creatorcontrib>Xiang, Mingjie</creatorcontrib><creatorcontrib>Huang, Shuo</creatorcontrib><creatorcontrib>Qiao, Linyi</creatorcontrib><creatorcontrib>Zheng, Weijun</creatorcontrib><creatorcontrib>Zeng, Qingdong</creatorcontrib><creatorcontrib>Wang, Qilin</creatorcontrib><creatorcontrib>Yu, Rui</creatorcontrib><creatorcontrib>Singh, Ravi P.</creatorcontrib><creatorcontrib>Bhavani, Sridhar</creatorcontrib><creatorcontrib>Kang, Zhensheng</creatorcontrib><creatorcontrib>Han, Dejun</creatorcontrib><creatorcontrib>Wang, Changfa</creatorcontrib><creatorcontrib>Wu, Jianhui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shengjie</au><au>Wang, Xiaoting</au><au>Zhang, Yayun</au><au>Jin, Yangang</au><au>Xia, Zhonghua</au><au>Xiang, Mingjie</au><au>Huang, Shuo</au><au>Qiao, Linyi</au><au>Zheng, Weijun</au><au>Zeng, Qingdong</au><au>Wang, Qilin</au><au>Yu, Rui</au><au>Singh, Ravi P.</au><au>Bhavani, Sridhar</au><au>Kang, Zhensheng</au><au>Han, Dejun</au><au>Wang, Changfa</au><au>Wu, Jianhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022</date><risdate>2022</risdate><volume>135</volume><issue>1</issue><spage>351</spage><epage>365</epage><pages>351-365</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message YrFDC12 and PbcFDC , co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only QYr.nwafu-3BS from RH520 and QYr.nwafu-4BL.2 (named YrFDC12 for convenience) from FDC12 were consistent across the four testing environments. QYr.nwafu-3BS is likely the pleiotropic resistance gene Sr2/Yr30 . YrFDC12 was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers AX-111121224 and AX-89518393 . Lines harboring both Yr30 and YrFDC12 displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci Pbc1 and PbcFDC12, which co-segregated with Yr30 and YrFDC12 , respectively. Both marker-based and pedigree-based kinship analyses revealed that YrFDC12 was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the YrFDC12 haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34665265</pmid><doi>10.1007/s00122-021-03970-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8154-1199</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2022, Vol.135 (1), p.351-365
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_2583442748
source MEDLINE; SpringerLink Journals
subjects Agricultural research
Agriculture
Biochemistry
Biomedical and Life Sciences
Biotechnology
Chromosome Mapping
Chromosomes
Chromosomes, Plant
Control
Cultivars
Disease Resistance - genetics
Diseases and pests
Gene mapping
Genes, Plant
Genetic aspects
Genotyping
Genotyping Techniques
Haplotypes
Inbreeding
Life Sciences
Methods
Original Article
Plant Biochemistry
Plant breeding
Plant Breeding/Biotechnology
Plant Diseases - genetics
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Genetics and Genomics
Plant immunology
Plant resistance
Puccinia - immunology
Puccinia - physiology
Quantitative Trait Loci
Rust diseases
Single-nucleotide polymorphism
Stripe rust
Triticum - genetics
Triticum - immunology
Triticum - microbiology
Wheat
title Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20stripe%20rust%20resistance%20obtained%20by%20combining%20Yr30%20with%20a%20widely%20dispersed,%20consistent%20QTL%20on%20chromosome%20arm%204BL&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Liu,%20Shengjie&rft.date=2022&rft.volume=135&rft.issue=1&rft.spage=351&rft.epage=365&rft.pages=351-365&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-021-03970-4&rft_dat=%3Cgale_proqu%3EA689033102%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617592955&rft_id=info:pmid/34665265&rft_galeid=A689033102&rfr_iscdi=true