Hessian-Aided Random Perturbation (HARP) Using Noisy Zeroth-Order Oracles

In stochastic optimization problems where only noisy zeroth-order (ZO) oracles are available, the Kiefer-Wolfowitz algorithm and its randomized counterparts are widely used as gradient estimators. Existing algorithms generate the random perturbations from certain distributions with a zero mean and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2023-07, Vol.34 (7), p.3717-3726
1. Verfasser: Zhu, Jingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3726
container_issue 7
container_start_page 3717
container_title IEEE transaction on neural networks and learning systems
container_volume 34
creator Zhu, Jingyi
description In stochastic optimization problems where only noisy zeroth-order (ZO) oracles are available, the Kiefer-Wolfowitz algorithm and its randomized counterparts are widely used as gradient estimators. Existing algorithms generate the random perturbations from certain distributions with a zero mean and an isotropic (either identity or scalar) covariance matrix. In contrast, this work considers the generalization where the perturbations may have an anisotropic covariance based on the ZO oracle history. We propose to feed the second-order approximation into the covariance matrix of the random perturbation, so it is dubbed as Hessian-aided random perturbation (HARP). HARP collects two or more (depending on the specific estimator form) ZO oracle calls per iteration to construct the gradient and the Hessian estimators. We prove HARP's almost-surely convergence and derive its convergence rate under standard assumptions. We demonstrate, with theoretical guarantees and numerical experiments, that HARP is less sensitive to ill-conditioning and more query-efficient than other gradient approximation schemes whose random perturbations have an isotropic covariance.
doi_str_mv 10.1109/TNNLS.2021.3117999
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582818078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9576097</ieee_id><sourcerecordid>2834305657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-1f5a5cf09f9f6d560a0388117730617905300c7583b41a524b0d19ce87b3a7b33</originalsourceid><addsrcrecordid>eNpdkEFrwjAUx8PYmOL8AhuMwi7uUPeSNE1yFNmmICpOYewS0jbdKtq6pD347Ren87BAyIP83uP_fgjdYuhjDPJpOZ1O3voECO5TjLmU8gK1CY5JSKgQl-eav7dQ17k1-BMDiyN5jVo0ihkFEG00HhnnCl2GgyIzWbDQZVZtg7mxdWMTXRdVGfRGg8X8MVi5ovwMplXh9sGHsVX9Fc5sZmwwszrdGHeDrnK9caZ7ejto9fK8HI7Cyex1PBxMwpQCqUOcM83SHGQu8zhjMWjwef0GnELs94BDsJQzQZMIa0aiBDIsUyN4QrW_tIN6x7k7W303xtVqW7jUbDa6NFXjFGGCCCyAC48-_EPXVWNLn04RQSPqdTDuKXKkUls5Z02udrbYartXGNTBtfp1rQ6u1cm1b7o_jW6SrcnOLX9mPXB3BApjzPlbMh6D5PQHKC9_OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834305657</pqid></control><display><type>article</type><title>Hessian-Aided Random Perturbation (HARP) Using Noisy Zeroth-Order Oracles</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Jingyi</creator><creatorcontrib>Zhu, Jingyi</creatorcontrib><description>In stochastic optimization problems where only noisy zeroth-order (ZO) oracles are available, the Kiefer-Wolfowitz algorithm and its randomized counterparts are widely used as gradient estimators. Existing algorithms generate the random perturbations from certain distributions with a zero mean and an isotropic (either identity or scalar) covariance matrix. In contrast, this work considers the generalization where the perturbations may have an anisotropic covariance based on the ZO oracle history. We propose to feed the second-order approximation into the covariance matrix of the random perturbation, so it is dubbed as Hessian-aided random perturbation (HARP). HARP collects two or more (depending on the specific estimator form) ZO oracle calls per iteration to construct the gradient and the Hessian estimators. We prove HARP's almost-surely convergence and derive its convergence rate under standard assumptions. We demonstrate, with theoretical guarantees and numerical experiments, that HARP is less sensitive to ill-conditioning and more query-efficient than other gradient approximation schemes whose random perturbations have an isotropic covariance.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3117999</identifier><identifier>PMID: 34653008</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation algorithms ; Convergence ; Covariance matrices ; Covariance matrix ; Derivative-free optimization ; Estimators ; Hessian estimator ; Ill-conditioned problems (mathematics) ; Iterative methods ; Loss measurement ; Mathematical analysis ; Noise measurement ; Optimization ; Perturbation ; Perturbation methods ; simultaneous perturbation ; stochastic approximation (SA) ; Stochasticity</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-07, Vol.34 (7), p.3717-3726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-1f5a5cf09f9f6d560a0388117730617905300c7583b41a524b0d19ce87b3a7b33</cites><orcidid>0000-0001-7553-585X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9576097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9576097$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34653008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jingyi</creatorcontrib><title>Hessian-Aided Random Perturbation (HARP) Using Noisy Zeroth-Order Oracles</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In stochastic optimization problems where only noisy zeroth-order (ZO) oracles are available, the Kiefer-Wolfowitz algorithm and its randomized counterparts are widely used as gradient estimators. Existing algorithms generate the random perturbations from certain distributions with a zero mean and an isotropic (either identity or scalar) covariance matrix. In contrast, this work considers the generalization where the perturbations may have an anisotropic covariance based on the ZO oracle history. We propose to feed the second-order approximation into the covariance matrix of the random perturbation, so it is dubbed as Hessian-aided random perturbation (HARP). HARP collects two or more (depending on the specific estimator form) ZO oracle calls per iteration to construct the gradient and the Hessian estimators. We prove HARP's almost-surely convergence and derive its convergence rate under standard assumptions. We demonstrate, with theoretical guarantees and numerical experiments, that HARP is less sensitive to ill-conditioning and more query-efficient than other gradient approximation schemes whose random perturbations have an isotropic covariance.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Convergence</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Derivative-free optimization</subject><subject>Estimators</subject><subject>Hessian estimator</subject><subject>Ill-conditioned problems (mathematics)</subject><subject>Iterative methods</subject><subject>Loss measurement</subject><subject>Mathematical analysis</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>simultaneous perturbation</subject><subject>stochastic approximation (SA)</subject><subject>Stochasticity</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFrwjAUx8PYmOL8AhuMwi7uUPeSNE1yFNmmICpOYewS0jbdKtq6pD347Ren87BAyIP83uP_fgjdYuhjDPJpOZ1O3voECO5TjLmU8gK1CY5JSKgQl-eav7dQ17k1-BMDiyN5jVo0ihkFEG00HhnnCl2GgyIzWbDQZVZtg7mxdWMTXRdVGfRGg8X8MVi5ovwMplXh9sGHsVX9Fc5sZmwwszrdGHeDrnK9caZ7ejto9fK8HI7Cyex1PBxMwpQCqUOcM83SHGQu8zhjMWjwef0GnELs94BDsJQzQZMIa0aiBDIsUyN4QrW_tIN6x7k7W303xtVqW7jUbDa6NFXjFGGCCCyAC48-_EPXVWNLn04RQSPqdTDuKXKkUls5Z02udrbYartXGNTBtfp1rQ6u1cm1b7o_jW6SrcnOLX9mPXB3BApjzPlbMh6D5PQHKC9_OA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhu, Jingyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7553-585X</orcidid></search><sort><creationdate>20230701</creationdate><title>Hessian-Aided Random Perturbation (HARP) Using Noisy Zeroth-Order Oracles</title><author>Zhu, Jingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-1f5a5cf09f9f6d560a0388117730617905300c7583b41a524b0d19ce87b3a7b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Convergence</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Derivative-free optimization</topic><topic>Estimators</topic><topic>Hessian estimator</topic><topic>Ill-conditioned problems (mathematics)</topic><topic>Iterative methods</topic><topic>Loss measurement</topic><topic>Mathematical analysis</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>simultaneous perturbation</topic><topic>stochastic approximation (SA)</topic><topic>Stochasticity</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jingyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Jingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hessian-Aided Random Perturbation (HARP) Using Noisy Zeroth-Order Oracles</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>34</volume><issue>7</issue><spage>3717</spage><epage>3726</epage><pages>3717-3726</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In stochastic optimization problems where only noisy zeroth-order (ZO) oracles are available, the Kiefer-Wolfowitz algorithm and its randomized counterparts are widely used as gradient estimators. Existing algorithms generate the random perturbations from certain distributions with a zero mean and an isotropic (either identity or scalar) covariance matrix. In contrast, this work considers the generalization where the perturbations may have an anisotropic covariance based on the ZO oracle history. We propose to feed the second-order approximation into the covariance matrix of the random perturbation, so it is dubbed as Hessian-aided random perturbation (HARP). HARP collects two or more (depending on the specific estimator form) ZO oracle calls per iteration to construct the gradient and the Hessian estimators. We prove HARP's almost-surely convergence and derive its convergence rate under standard assumptions. We demonstrate, with theoretical guarantees and numerical experiments, that HARP is less sensitive to ill-conditioning and more query-efficient than other gradient approximation schemes whose random perturbations have an isotropic covariance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34653008</pmid><doi>10.1109/TNNLS.2021.3117999</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7553-585X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-07, Vol.34 (7), p.3717-3726
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2582818078
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation
Approximation algorithms
Convergence
Covariance matrices
Covariance matrix
Derivative-free optimization
Estimators
Hessian estimator
Ill-conditioned problems (mathematics)
Iterative methods
Loss measurement
Mathematical analysis
Noise measurement
Optimization
Perturbation
Perturbation methods
simultaneous perturbation
stochastic approximation (SA)
Stochasticity
title Hessian-Aided Random Perturbation (HARP) Using Noisy Zeroth-Order Oracles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hessian-Aided%20Random%20Perturbation%20(HARP)%20Using%20Noisy%20Zeroth-Order%20Oracles&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhu,%20Jingyi&rft.date=2023-07-01&rft.volume=34&rft.issue=7&rft.spage=3717&rft.epage=3726&rft.pages=3717-3726&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3117999&rft_dat=%3Cproquest_RIE%3E2834305657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834305657&rft_id=info:pmid/34653008&rft_ieee_id=9576097&rfr_iscdi=true