Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images
Diabetic retinopathy (DR) is a leading cause of permanent blindness among the working-age people. Automatic DR grading can help ophthalmologists make timely treatment for patients. However, the existing grading methods are usually trained with high resolution (HR) fundus images, such that the gradin...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2022-05, Vol.26 (5), p.2216-2227 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2227 |
---|---|
container_issue | 5 |
container_start_page | 2216 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Wang, Xiaofei Xu, Mai Zhang, Jicong Jiang, Lai Li, Liu He, Mengxian Wang, Ningli Liu, Hanruo Wang, Zulin |
description | Diabetic retinopathy (DR) is a leading cause of permanent blindness among the working-age people. Automatic DR grading can help ophthalmologists make timely treatment for patients. However, the existing grading methods are usually trained with high resolution (HR) fundus images, such that the grading performance decreases a lot given low resolution (LR) images, which are common in clinic. In this paper, we mainly focus on DR grading with LR fundus images. According to our analysis on the DR task, we find that: 1) image super-resolution (ISR) can boost the performance of both DR grading and lesion segmentation; 2) the lesion segmentation regions of fundus images are highly consistent with pathological regions for DR grading. Based on our findings, we propose a convolutional neural network (CNN)-based method for joint learning of multi-level tasks for DR grading, called DeepMT-DR, which can simultaneously handle the low-level task of ISR, the mid-level task of lesion segmentation and the high-level task of disease severity classification on LR fundus images. Moreover, a novel task-aware loss is developed to encourage ISR to focus on the pathological regions for its subsequent tasks: lesion segmentation and DR grading. Extensive experimental results show that our DeepMT-DR method significantly outperforms other state-of-the-art methods for DR grading over three datasets. In addition, our method achieves comparable performance in two auxiliary tasks of ISR and lesion segmentation. |
doi_str_mv | 10.1109/JBHI.2021.3119519 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582813564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9573274</ieee_id><sourcerecordid>2660158297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e50e2ec1f7835ed3d9711216756109428e9d8c415ce518ffb2b36f1aa0e24c9a3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EaqvSH1AhIUtcuGTx-Cv2EUo_tgqqVLVny5tMiks2XuwE1H9fL7vtgTl4xvbzjjx-CTkFtgBg9sv1t6vlgjMOCwFgFdg35IiDNhXnzLx9qcHKQ3KS8yMrYcqR1QfkUEgtjdTsiHTXMYwTbdCnMYwPNPb0xzxMoWrwDw70zudfmfYx0e_Br3AKLb0t6xg3fvr5RC-T7_6pRtrEv9Ut5jjMUyjbi3ns5kyXa_-A-T151_sh48k-H5P7i_O7s6uqublcnn1tqlZIO1WoGHJsoa-NUNiJztYAZYxa6TKw5AZtZ1oJqkUFpu9XfCV0D94XmWytF8fk867vJsXfM-bJrUNucRj8iHHOjivDDQilZUE__Yc-xjmN5XWOa82gkLYuFOyoNsWcE_Zuk8LapycHzG1dcFsX3NYFt3ehaD7uO8-rNXavipc_L8CHHRAQ8fXaqlrwWopnBgSJ4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660158297</pqid></control><display><type>article</type><title>Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xiaofei ; Xu, Mai ; Zhang, Jicong ; Jiang, Lai ; Li, Liu ; He, Mengxian ; Wang, Ningli ; Liu, Hanruo ; Wang, Zulin</creator><creatorcontrib>Wang, Xiaofei ; Xu, Mai ; Zhang, Jicong ; Jiang, Lai ; Li, Liu ; He, Mengxian ; Wang, Ningli ; Liu, Hanruo ; Wang, Zulin</creatorcontrib><description>Diabetic retinopathy (DR) is a leading cause of permanent blindness among the working-age people. Automatic DR grading can help ophthalmologists make timely treatment for patients. However, the existing grading methods are usually trained with high resolution (HR) fundus images, such that the grading performance decreases a lot given low resolution (LR) images, which are common in clinic. In this paper, we mainly focus on DR grading with LR fundus images. According to our analysis on the DR task, we find that: 1) image super-resolution (ISR) can boost the performance of both DR grading and lesion segmentation; 2) the lesion segmentation regions of fundus images are highly consistent with pathological regions for DR grading. Based on our findings, we propose a convolutional neural network (CNN)-based method for joint learning of multi-level tasks for DR grading, called DeepMT-DR, which can simultaneously handle the low-level task of ISR, the mid-level task of lesion segmentation and the high-level task of disease severity classification on LR fundus images. Moreover, a novel task-aware loss is developed to encourage ISR to focus on the pathological regions for its subsequent tasks: lesion segmentation and DR grading. Extensive experimental results show that our DeepMT-DR method significantly outperforms other state-of-the-art methods for DR grading over three datasets. In addition, our method achieves comparable performance in two auxiliary tasks of ISR and lesion segmentation.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3119519</identifier><identifier>PMID: 34648460</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Blindness ; Correlation ; Deep neural networks ; Diabetes ; Diabetes Mellitus ; Diabetic retinopathy ; Diabetic Retinopathy - diagnostic imaging ; Fundus Oculi ; Humans ; Image classification ; Image processing ; Image resolution ; Image segmentation ; Learning ; Lesions ; Medical diagnosis ; Medical diagnostic imaging ; Medical imaging ; multi-task learning ; Neural networks ; Neural Networks, Computer ; Pathology ; Research Design ; Retina ; retinal fundus images ; Retinopathy ; Severity of Illness Index ; Task analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-05, Vol.26 (5), p.2216-2227</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e50e2ec1f7835ed3d9711216756109428e9d8c415ce518ffb2b36f1aa0e24c9a3</citedby><cites>FETCH-LOGICAL-c349t-e50e2ec1f7835ed3d9711216756109428e9d8c415ce518ffb2b36f1aa0e24c9a3</cites><orcidid>0000-0002-0277-3301 ; 0000-0002-3325-5371 ; 0000-0002-4639-8136 ; 0000-0001-9000-9022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9573274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9573274$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34648460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Xu, Mai</creatorcontrib><creatorcontrib>Zhang, Jicong</creatorcontrib><creatorcontrib>Jiang, Lai</creatorcontrib><creatorcontrib>Li, Liu</creatorcontrib><creatorcontrib>He, Mengxian</creatorcontrib><creatorcontrib>Wang, Ningli</creatorcontrib><creatorcontrib>Liu, Hanruo</creatorcontrib><creatorcontrib>Wang, Zulin</creatorcontrib><title>Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Diabetic retinopathy (DR) is a leading cause of permanent blindness among the working-age people. Automatic DR grading can help ophthalmologists make timely treatment for patients. However, the existing grading methods are usually trained with high resolution (HR) fundus images, such that the grading performance decreases a lot given low resolution (LR) images, which are common in clinic. In this paper, we mainly focus on DR grading with LR fundus images. According to our analysis on the DR task, we find that: 1) image super-resolution (ISR) can boost the performance of both DR grading and lesion segmentation; 2) the lesion segmentation regions of fundus images are highly consistent with pathological regions for DR grading. Based on our findings, we propose a convolutional neural network (CNN)-based method for joint learning of multi-level tasks for DR grading, called DeepMT-DR, which can simultaneously handle the low-level task of ISR, the mid-level task of lesion segmentation and the high-level task of disease severity classification on LR fundus images. Moreover, a novel task-aware loss is developed to encourage ISR to focus on the pathological regions for its subsequent tasks: lesion segmentation and DR grading. Extensive experimental results show that our DeepMT-DR method significantly outperforms other state-of-the-art methods for DR grading over three datasets. In addition, our method achieves comparable performance in two auxiliary tasks of ISR and lesion segmentation.</description><subject>Artificial neural networks</subject><subject>Blindness</subject><subject>Correlation</subject><subject>Deep neural networks</subject><subject>Diabetes</subject><subject>Diabetes Mellitus</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - diagnostic imaging</subject><subject>Fundus Oculi</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Lesions</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>Medical imaging</subject><subject>multi-task learning</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pathology</subject><subject>Research Design</subject><subject>Retina</subject><subject>retinal fundus images</subject><subject>Retinopathy</subject><subject>Severity of Illness Index</subject><subject>Task analysis</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EaqvSH1AhIUtcuGTx-Cv2EUo_tgqqVLVny5tMiks2XuwE1H9fL7vtgTl4xvbzjjx-CTkFtgBg9sv1t6vlgjMOCwFgFdg35IiDNhXnzLx9qcHKQ3KS8yMrYcqR1QfkUEgtjdTsiHTXMYwTbdCnMYwPNPb0xzxMoWrwDw70zudfmfYx0e_Br3AKLb0t6xg3fvr5RC-T7_6pRtrEv9Ut5jjMUyjbi3ns5kyXa_-A-T151_sh48k-H5P7i_O7s6uqublcnn1tqlZIO1WoGHJsoa-NUNiJztYAZYxa6TKw5AZtZ1oJqkUFpu9XfCV0D94XmWytF8fk867vJsXfM-bJrUNucRj8iHHOjivDDQilZUE__Yc-xjmN5XWOa82gkLYuFOyoNsWcE_Zuk8LapycHzG1dcFsX3NYFt3ehaD7uO8-rNXavipc_L8CHHRAQ8fXaqlrwWopnBgSJ4g</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Wang, Xiaofei</creator><creator>Xu, Mai</creator><creator>Zhang, Jicong</creator><creator>Jiang, Lai</creator><creator>Li, Liu</creator><creator>He, Mengxian</creator><creator>Wang, Ningli</creator><creator>Liu, Hanruo</creator><creator>Wang, Zulin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0277-3301</orcidid><orcidid>https://orcid.org/0000-0002-3325-5371</orcidid><orcidid>https://orcid.org/0000-0002-4639-8136</orcidid><orcidid>https://orcid.org/0000-0001-9000-9022</orcidid></search><sort><creationdate>20220501</creationdate><title>Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images</title><author>Wang, Xiaofei ; Xu, Mai ; Zhang, Jicong ; Jiang, Lai ; Li, Liu ; He, Mengxian ; Wang, Ningli ; Liu, Hanruo ; Wang, Zulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e50e2ec1f7835ed3d9711216756109428e9d8c415ce518ffb2b36f1aa0e24c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Blindness</topic><topic>Correlation</topic><topic>Deep neural networks</topic><topic>Diabetes</topic><topic>Diabetes Mellitus</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - diagnostic imaging</topic><topic>Fundus Oculi</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Lesions</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>Medical imaging</topic><topic>multi-task learning</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pathology</topic><topic>Research Design</topic><topic>Retina</topic><topic>retinal fundus images</topic><topic>Retinopathy</topic><topic>Severity of Illness Index</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Xu, Mai</creatorcontrib><creatorcontrib>Zhang, Jicong</creatorcontrib><creatorcontrib>Jiang, Lai</creatorcontrib><creatorcontrib>Li, Liu</creatorcontrib><creatorcontrib>He, Mengxian</creatorcontrib><creatorcontrib>Wang, Ningli</creatorcontrib><creatorcontrib>Liu, Hanruo</creatorcontrib><creatorcontrib>Wang, Zulin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xiaofei</au><au>Xu, Mai</au><au>Zhang, Jicong</au><au>Jiang, Lai</au><au>Li, Liu</au><au>He, Mengxian</au><au>Wang, Ningli</au><au>Liu, Hanruo</au><au>Wang, Zulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><spage>2216</spage><epage>2227</epage><pages>2216-2227</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Diabetic retinopathy (DR) is a leading cause of permanent blindness among the working-age people. Automatic DR grading can help ophthalmologists make timely treatment for patients. However, the existing grading methods are usually trained with high resolution (HR) fundus images, such that the grading performance decreases a lot given low resolution (LR) images, which are common in clinic. In this paper, we mainly focus on DR grading with LR fundus images. According to our analysis on the DR task, we find that: 1) image super-resolution (ISR) can boost the performance of both DR grading and lesion segmentation; 2) the lesion segmentation regions of fundus images are highly consistent with pathological regions for DR grading. Based on our findings, we propose a convolutional neural network (CNN)-based method for joint learning of multi-level tasks for DR grading, called DeepMT-DR, which can simultaneously handle the low-level task of ISR, the mid-level task of lesion segmentation and the high-level task of disease severity classification on LR fundus images. Moreover, a novel task-aware loss is developed to encourage ISR to focus on the pathological regions for its subsequent tasks: lesion segmentation and DR grading. Extensive experimental results show that our DeepMT-DR method significantly outperforms other state-of-the-art methods for DR grading over three datasets. In addition, our method achieves comparable performance in two auxiliary tasks of ISR and lesion segmentation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34648460</pmid><doi>10.1109/JBHI.2021.3119519</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0277-3301</orcidid><orcidid>https://orcid.org/0000-0002-3325-5371</orcidid><orcidid>https://orcid.org/0000-0002-4639-8136</orcidid><orcidid>https://orcid.org/0000-0001-9000-9022</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2022-05, Vol.26 (5), p.2216-2227 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_2582813564 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Blindness Correlation Deep neural networks Diabetes Diabetes Mellitus Diabetic retinopathy Diabetic Retinopathy - diagnostic imaging Fundus Oculi Humans Image classification Image processing Image resolution Image segmentation Learning Lesions Medical diagnosis Medical diagnostic imaging Medical imaging multi-task learning Neural networks Neural Networks, Computer Pathology Research Design Retina retinal fundus images Retinopathy Severity of Illness Index Task analysis |
title | Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Learning%20of%20Multi-Level%20Tasks%20for%20Diabetic%20Retinopathy%20Grading%20on%20Low-Resolution%20Fundus%20Images&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Wang,%20Xiaofei&rft.date=2022-05-01&rft.volume=26&rft.issue=5&rft.spage=2216&rft.epage=2227&rft.pages=2216-2227&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3119519&rft_dat=%3Cproquest_RIE%3E2660158297%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660158297&rft_id=info:pmid/34648460&rft_ieee_id=9573274&rfr_iscdi=true |