Detection and Tracking Meet Drones Challenge
Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and dro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-11, Vol.44 (11), p.7380-7399 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7399 |
---|---|
container_issue | 11 |
container_start_page | 7380 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Zhu, Pengfei Wen, Longyin Du, Dawei Bian, Xiao Fan, Heng Hu, Qinghua Ling, Haibin |
description | Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset . |
doi_str_mv | 10.1109/TPAMI.2021.3119563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582813528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9573394</ieee_id><sourcerecordid>2721429895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ccef4fa049988357dc27beac04325ec63bd79c223a5d800662a5ddd1067682213</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqXwB2CJxMJAin1nJ_ZYtXxUagVDmS3XuZSUNClxOvDvSWnFwHQ3PO_p3oexa8GHQnDzsHgbzadD4CCGKIRRCZ6wvjBoYlRoTlmfiwRirUH32EUIa86FVBzPWQ9lIrVE3mf3E2rJt0VdRa7KokXj_GdRraI5URtNmrqiEI0_XFlStaJLdpa7MtDVcQ7Y-9PjYvwSz16fp-PRLPZoZBt7T7nMHZfGaI0qzTykS3KeSwRFPsFllhoPgE5lmvMkgW7JMsGTNNEAAgfs7nB329RfOwqt3RTBU1m6iupdsKC6TgIV6A69_Yeu611Tdd9ZSEFIMNqojoID5Zs6hIZyu22KjWu-reB279L-urR7l_bosgvdHEIFEf0FjEqxa4k_Z3RrZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429895</pqid></control><display><type>article</type><title>Detection and Tracking Meet Drones Challenge</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Pengfei ; Wen, Longyin ; Du, Dawei ; Bian, Xiao ; Fan, Heng ; Hu, Qinghua ; Ling, Haibin</creator><creatorcontrib>Zhu, Pengfei ; Wen, Longyin ; Du, Dawei ; Bian, Xiao ; Fan, Heng ; Hu, Qinghua ; Ling, Haibin</creatorcontrib><description>Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3119563</identifier><identifier>PMID: 34648430</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerial photography ; Algorithms ; Annotations ; benchmark ; Benchmark testing ; Benchmarks ; Computer vision ; Conferences ; Datasets ; Drone ; Drones ; image object detection ; multi-object tracking ; Multiple target tracking ; Object detection ; Object recognition ; R&D ; Research & development ; single object tracking ; Suburban areas ; Surveillance ; Target tracking ; Unmanned aerial vehicles ; video object detection</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.7380-7399</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ccef4fa049988357dc27beac04325ec63bd79c223a5d800662a5ddd1067682213</citedby><cites>FETCH-LOGICAL-c394t-ccef4fa049988357dc27beac04325ec63bd79c223a5d800662a5ddd1067682213</cites><orcidid>0000-0001-5525-492X ; 0000-0002-4310-9140 ; 0000-0003-4094-8413 ; 0000-0001-7765-8095 ; 0000-0002-3308-7873 ; 0000-0001-9404-524X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9573394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9573394$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Pengfei</creatorcontrib><creatorcontrib>Wen, Longyin</creatorcontrib><creatorcontrib>Du, Dawei</creatorcontrib><creatorcontrib>Bian, Xiao</creatorcontrib><creatorcontrib>Fan, Heng</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Ling, Haibin</creatorcontrib><title>Detection and Tracking Meet Drones Challenge</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset .</description><subject>Aerial photography</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>benchmark</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Datasets</subject><subject>Drone</subject><subject>Drones</subject><subject>image object detection</subject><subject>multi-object tracking</subject><subject>Multiple target tracking</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>R&D</subject><subject>Research & development</subject><subject>single object tracking</subject><subject>Suburban areas</subject><subject>Surveillance</subject><subject>Target tracking</subject><subject>Unmanned aerial vehicles</subject><subject>video object detection</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EoqXwB2CJxMJAin1nJ_ZYtXxUagVDmS3XuZSUNClxOvDvSWnFwHQ3PO_p3oexa8GHQnDzsHgbzadD4CCGKIRRCZ6wvjBoYlRoTlmfiwRirUH32EUIa86FVBzPWQ9lIrVE3mf3E2rJt0VdRa7KokXj_GdRraI5URtNmrqiEI0_XFlStaJLdpa7MtDVcQ7Y-9PjYvwSz16fp-PRLPZoZBt7T7nMHZfGaI0qzTykS3KeSwRFPsFllhoPgE5lmvMkgW7JMsGTNNEAAgfs7nB329RfOwqt3RTBU1m6iupdsKC6TgIV6A69_Yeu611Tdd9ZSEFIMNqojoID5Zs6hIZyu22KjWu-reB279L-urR7l_bosgvdHEIFEf0FjEqxa4k_Z3RrZQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Zhu, Pengfei</creator><creator>Wen, Longyin</creator><creator>Du, Dawei</creator><creator>Bian, Xiao</creator><creator>Fan, Heng</creator><creator>Hu, Qinghua</creator><creator>Ling, Haibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5525-492X</orcidid><orcidid>https://orcid.org/0000-0002-4310-9140</orcidid><orcidid>https://orcid.org/0000-0003-4094-8413</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0002-3308-7873</orcidid><orcidid>https://orcid.org/0000-0001-9404-524X</orcidid></search><sort><creationdate>20221101</creationdate><title>Detection and Tracking Meet Drones Challenge</title><author>Zhu, Pengfei ; Wen, Longyin ; Du, Dawei ; Bian, Xiao ; Fan, Heng ; Hu, Qinghua ; Ling, Haibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ccef4fa049988357dc27beac04325ec63bd79c223a5d800662a5ddd1067682213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerial photography</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>benchmark</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Datasets</topic><topic>Drone</topic><topic>Drones</topic><topic>image object detection</topic><topic>multi-object tracking</topic><topic>Multiple target tracking</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>R&D</topic><topic>Research & development</topic><topic>single object tracking</topic><topic>Suburban areas</topic><topic>Surveillance</topic><topic>Target tracking</topic><topic>Unmanned aerial vehicles</topic><topic>video object detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Pengfei</creatorcontrib><creatorcontrib>Wen, Longyin</creatorcontrib><creatorcontrib>Du, Dawei</creatorcontrib><creatorcontrib>Bian, Xiao</creatorcontrib><creatorcontrib>Fan, Heng</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Ling, Haibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Pengfei</au><au>Wen, Longyin</au><au>Du, Dawei</au><au>Bian, Xiao</au><au>Fan, Heng</au><au>Hu, Qinghua</au><au>Ling, Haibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Tracking Meet Drones Challenge</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>44</volume><issue>11</issue><spage>7380</spage><epage>7399</epage><pages>7380-7399</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset .</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34648430</pmid><doi>10.1109/TPAMI.2021.3119563</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5525-492X</orcidid><orcidid>https://orcid.org/0000-0002-4310-9140</orcidid><orcidid>https://orcid.org/0000-0003-4094-8413</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0002-3308-7873</orcidid><orcidid>https://orcid.org/0000-0001-9404-524X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.7380-7399 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_miscellaneous_2582813528 |
source | IEEE Electronic Library (IEL) |
subjects | Aerial photography Algorithms Annotations benchmark Benchmark testing Benchmarks Computer vision Conferences Datasets Drone Drones image object detection multi-object tracking Multiple target tracking Object detection Object recognition R&D Research & development single object tracking Suburban areas Surveillance Target tracking Unmanned aerial vehicles video object detection |
title | Detection and Tracking Meet Drones Challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Tracking%20Meet%20Drones%20Challenge&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhu,%20Pengfei&rft.date=2022-11-01&rft.volume=44&rft.issue=11&rft.spage=7380&rft.epage=7399&rft.pages=7380-7399&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3119563&rft_dat=%3Cproquest_RIE%3E2721429895%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429895&rft_id=info:pmid/34648430&rft_ieee_id=9573394&rfr_iscdi=true |