Detection and Tracking Meet Drones Challenge

Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and dro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2022-11, Vol.44 (11), p.7380-7399
Hauptverfasser: Zhu, Pengfei, Wen, Longyin, Du, Dawei, Bian, Xiao, Fan, Heng, Hu, Qinghua, Ling, Haibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7399
container_issue 11
container_start_page 7380
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 44
creator Zhu, Pengfei
Wen, Longyin
Du, Dawei
Bian, Xiao
Fan, Heng
Hu, Qinghua
Ling, Haibin
description Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset .
doi_str_mv 10.1109/TPAMI.2021.3119563
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582813528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9573394</ieee_id><sourcerecordid>2721429895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ccef4fa049988357dc27beac04325ec63bd79c223a5d800662a5ddd1067682213</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqXwB2CJxMJAin1nJ_ZYtXxUagVDmS3XuZSUNClxOvDvSWnFwHQ3PO_p3oexa8GHQnDzsHgbzadD4CCGKIRRCZ6wvjBoYlRoTlmfiwRirUH32EUIa86FVBzPWQ9lIrVE3mf3E2rJt0VdRa7KokXj_GdRraI5URtNmrqiEI0_XFlStaJLdpa7MtDVcQ7Y-9PjYvwSz16fp-PRLPZoZBt7T7nMHZfGaI0qzTykS3KeSwRFPsFllhoPgE5lmvMkgW7JMsGTNNEAAgfs7nB329RfOwqt3RTBU1m6iupdsKC6TgIV6A69_Yeu611Tdd9ZSEFIMNqojoID5Zs6hIZyu22KjWu-reB279L-urR7l_bosgvdHEIFEf0FjEqxa4k_Z3RrZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429895</pqid></control><display><type>article</type><title>Detection and Tracking Meet Drones Challenge</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Pengfei ; Wen, Longyin ; Du, Dawei ; Bian, Xiao ; Fan, Heng ; Hu, Qinghua ; Ling, Haibin</creator><creatorcontrib>Zhu, Pengfei ; Wen, Longyin ; Du, Dawei ; Bian, Xiao ; Fan, Heng ; Hu, Qinghua ; Ling, Haibin</creatorcontrib><description>Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3119563</identifier><identifier>PMID: 34648430</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerial photography ; Algorithms ; Annotations ; benchmark ; Benchmark testing ; Benchmarks ; Computer vision ; Conferences ; Datasets ; Drone ; Drones ; image object detection ; multi-object tracking ; Multiple target tracking ; Object detection ; Object recognition ; R&amp;D ; Research &amp; development ; single object tracking ; Suburban areas ; Surveillance ; Target tracking ; Unmanned aerial vehicles ; video object detection</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.7380-7399</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ccef4fa049988357dc27beac04325ec63bd79c223a5d800662a5ddd1067682213</citedby><cites>FETCH-LOGICAL-c394t-ccef4fa049988357dc27beac04325ec63bd79c223a5d800662a5ddd1067682213</cites><orcidid>0000-0001-5525-492X ; 0000-0002-4310-9140 ; 0000-0003-4094-8413 ; 0000-0001-7765-8095 ; 0000-0002-3308-7873 ; 0000-0001-9404-524X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9573394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9573394$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Pengfei</creatorcontrib><creatorcontrib>Wen, Longyin</creatorcontrib><creatorcontrib>Du, Dawei</creatorcontrib><creatorcontrib>Bian, Xiao</creatorcontrib><creatorcontrib>Fan, Heng</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Ling, Haibin</creatorcontrib><title>Detection and Tracking Meet Drones Challenge</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset .</description><subject>Aerial photography</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>benchmark</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Datasets</subject><subject>Drone</subject><subject>Drones</subject><subject>image object detection</subject><subject>multi-object tracking</subject><subject>Multiple target tracking</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>single object tracking</subject><subject>Suburban areas</subject><subject>Surveillance</subject><subject>Target tracking</subject><subject>Unmanned aerial vehicles</subject><subject>video object detection</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EoqXwB2CJxMJAin1nJ_ZYtXxUagVDmS3XuZSUNClxOvDvSWnFwHQ3PO_p3oexa8GHQnDzsHgbzadD4CCGKIRRCZ6wvjBoYlRoTlmfiwRirUH32EUIa86FVBzPWQ9lIrVE3mf3E2rJt0VdRa7KokXj_GdRraI5URtNmrqiEI0_XFlStaJLdpa7MtDVcQ7Y-9PjYvwSz16fp-PRLPZoZBt7T7nMHZfGaI0qzTykS3KeSwRFPsFllhoPgE5lmvMkgW7JMsGTNNEAAgfs7nB329RfOwqt3RTBU1m6iupdsKC6TgIV6A69_Yeu611Tdd9ZSEFIMNqojoID5Zs6hIZyu22KjWu-reB279L-urR7l_bosgvdHEIFEf0FjEqxa4k_Z3RrZQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Zhu, Pengfei</creator><creator>Wen, Longyin</creator><creator>Du, Dawei</creator><creator>Bian, Xiao</creator><creator>Fan, Heng</creator><creator>Hu, Qinghua</creator><creator>Ling, Haibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5525-492X</orcidid><orcidid>https://orcid.org/0000-0002-4310-9140</orcidid><orcidid>https://orcid.org/0000-0003-4094-8413</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0002-3308-7873</orcidid><orcidid>https://orcid.org/0000-0001-9404-524X</orcidid></search><sort><creationdate>20221101</creationdate><title>Detection and Tracking Meet Drones Challenge</title><author>Zhu, Pengfei ; Wen, Longyin ; Du, Dawei ; Bian, Xiao ; Fan, Heng ; Hu, Qinghua ; Ling, Haibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ccef4fa049988357dc27beac04325ec63bd79c223a5d800662a5ddd1067682213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerial photography</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>benchmark</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Datasets</topic><topic>Drone</topic><topic>Drones</topic><topic>image object detection</topic><topic>multi-object tracking</topic><topic>Multiple target tracking</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>single object tracking</topic><topic>Suburban areas</topic><topic>Surveillance</topic><topic>Target tracking</topic><topic>Unmanned aerial vehicles</topic><topic>video object detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Pengfei</creatorcontrib><creatorcontrib>Wen, Longyin</creatorcontrib><creatorcontrib>Du, Dawei</creatorcontrib><creatorcontrib>Bian, Xiao</creatorcontrib><creatorcontrib>Fan, Heng</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Ling, Haibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Pengfei</au><au>Wen, Longyin</au><au>Du, Dawei</au><au>Bian, Xiao</au><au>Fan, Heng</au><au>Hu, Qinghua</au><au>Ling, Haibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Tracking Meet Drones Challenge</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>44</volume><issue>11</issue><spage>7380</spage><epage>7399</epage><pages>7380-7399</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset .</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34648430</pmid><doi>10.1109/TPAMI.2021.3119563</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5525-492X</orcidid><orcidid>https://orcid.org/0000-0002-4310-9140</orcidid><orcidid>https://orcid.org/0000-0003-4094-8413</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0002-3308-7873</orcidid><orcidid>https://orcid.org/0000-0001-9404-524X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.7380-7399
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_2582813528
source IEEE Electronic Library (IEL)
subjects Aerial photography
Algorithms
Annotations
benchmark
Benchmark testing
Benchmarks
Computer vision
Conferences
Datasets
Drone
Drones
image object detection
multi-object tracking
Multiple target tracking
Object detection
Object recognition
R&D
Research & development
single object tracking
Suburban areas
Surveillance
Target tracking
Unmanned aerial vehicles
video object detection
title Detection and Tracking Meet Drones Challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Tracking%20Meet%20Drones%20Challenge&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhu,%20Pengfei&rft.date=2022-11-01&rft.volume=44&rft.issue=11&rft.spage=7380&rft.epage=7399&rft.pages=7380-7399&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3119563&rft_dat=%3Cproquest_RIE%3E2721429895%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429895&rft_id=info:pmid/34648430&rft_ieee_id=9573394&rfr_iscdi=true