Slab boundary artifact correction in multislab imaging using convolutional‐neural‐network–enabled inversion for slab profile encoding

Purpose This study aims to propose a novel algorithm for slab boundary artifact correction in both single‐band multislab imaging and simultaneous multislab (SMSlab) imaging. Theory and Methods In image domain, the formation of slab boundary artifacts can be regarded as modulating the artifact‐free i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2022-03, Vol.87 (3), p.1546-1560
Hauptverfasser: Zhang, Jieying, Liu, Simin, Dai, Erpeng, Ye, Xinyu, Shi, Diwei, Wu, Yuhsuan, Lu, Jie, Guo, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1560
container_issue 3
container_start_page 1546
container_title Magnetic resonance in medicine
container_volume 87
creator Zhang, Jieying
Liu, Simin
Dai, Erpeng
Ye, Xinyu
Shi, Diwei
Wu, Yuhsuan
Lu, Jie
Guo, Hua
description Purpose This study aims to propose a novel algorithm for slab boundary artifact correction in both single‐band multislab imaging and simultaneous multislab (SMSlab) imaging. Theory and Methods In image domain, the formation of slab boundary artifacts can be regarded as modulating the artifact‐free images using the slab profiles and introducing aliasing along the slice direction. Slab boundary artifact correction is the inverse problem of this process. An iterative algorithm based on convolutional neural networks (CNNs) is proposed to solve the problem, termed CNN‐enabled inversion for slab profile encoding (CPEN). Diffusion‐weighted SMSlab images and reference images without slab boundary artifacts were acquired in 7 healthy subjects for training. Images of 5 healthy subjects were acquired for testing, including single‐band multislab and SMSlab images with 1.3‐mm or 1‐mm isotropic resolution. CNN‐enabled inversion for slab profile encoding was compared with a previously reported method (i.e., nonlinear inversion for slab profile encoding [NPEN]). Results CNN‐enabled inversion for slab profile encoding reduces the slab boundary artifacts in both single‐band multislab and SMSlab images. It also suppresses the slab boundary artifacts in the diffusion metric maps. Compared with NPEN, CPEN shows fewer residual artifacts in different acquisition protocols and more significant improvements in quantitative assessment, and it also accelerates the computation by more than 35 times. Conclusion CNN‐enabled inversion for slab profile encoding can reduce the slab boundary artifacts in multislab acquisitions. It shows better slab boundary artifact correction capacity, higher robustness, and computation efficiency when compared with NPEN. It has the potential to improve the accuracy of multislab acquisitions in high‐resolution DWI and functional MRI.
doi_str_mv 10.1002/mrm.29047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582811212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621127181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-425bca4160c5774958b4828f3e93e918df6d2e7efe7eb407f2564f98ad6c91073</originalsourceid><addsrcrecordid>eNp1kU1LBSEUhiWKun0s-gMx0KYWU-roOC4j-oIi6GM9OI7GlKOlY3F37dsE_cN-SU731iIIjkcXDw_H8wKwieAeghDv977fwxwStgAmiGKcY8rJIphARmBeIE5WwGoI9xBCzhlZBisFKSmFnE7A27URTda4aFvhp5nwQ6eFHDLpvFdy6JzNOpv10QxdGMmuF3edvctiGLt09tmZOGLCfL6-WxX9_DG8OP_w-fqhrGiMapPlWfkw-rTz2bfr0TvdGZUpK12bdOtgSQsT1Mb8XgO3x0c3h6f5-eXJ2eHBeS4LWrCcYNpIQVAJJWWMcFo1pMKVLhRPhapWly1WTOl0GgKZxrQkmleiLSVHkBVrYGfmTQM8RRWGuu-CVMYIq1wMNaZJhxBGOKHbf9B7F336bKJKnBiGKpSo3RklvQvBK10_-rQoP60RrMeE6pRQ_Z1QYrfmxtj0qv0lfyJJwP4MeEm7mf5vqi-uLmbKL3iloD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621127181</pqid></control><display><type>article</type><title>Slab boundary artifact correction in multislab imaging using convolutional‐neural‐network–enabled inversion for slab profile encoding</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Zhang, Jieying ; Liu, Simin ; Dai, Erpeng ; Ye, Xinyu ; Shi, Diwei ; Wu, Yuhsuan ; Lu, Jie ; Guo, Hua</creator><creatorcontrib>Zhang, Jieying ; Liu, Simin ; Dai, Erpeng ; Ye, Xinyu ; Shi, Diwei ; Wu, Yuhsuan ; Lu, Jie ; Guo, Hua</creatorcontrib><description>Purpose This study aims to propose a novel algorithm for slab boundary artifact correction in both single‐band multislab imaging and simultaneous multislab (SMSlab) imaging. Theory and Methods In image domain, the formation of slab boundary artifacts can be regarded as modulating the artifact‐free images using the slab profiles and introducing aliasing along the slice direction. Slab boundary artifact correction is the inverse problem of this process. An iterative algorithm based on convolutional neural networks (CNNs) is proposed to solve the problem, termed CNN‐enabled inversion for slab profile encoding (CPEN). Diffusion‐weighted SMSlab images and reference images without slab boundary artifacts were acquired in 7 healthy subjects for training. Images of 5 healthy subjects were acquired for testing, including single‐band multislab and SMSlab images with 1.3‐mm or 1‐mm isotropic resolution. CNN‐enabled inversion for slab profile encoding was compared with a previously reported method (i.e., nonlinear inversion for slab profile encoding [NPEN]). Results CNN‐enabled inversion for slab profile encoding reduces the slab boundary artifacts in both single‐band multislab and SMSlab images. It also suppresses the slab boundary artifacts in the diffusion metric maps. Compared with NPEN, CPEN shows fewer residual artifacts in different acquisition protocols and more significant improvements in quantitative assessment, and it also accelerates the computation by more than 35 times. Conclusion CNN‐enabled inversion for slab profile encoding can reduce the slab boundary artifacts in multislab acquisitions. It shows better slab boundary artifact correction capacity, higher robustness, and computation efficiency when compared with NPEN. It has the potential to improve the accuracy of multislab acquisitions in high‐resolution DWI and functional MRI.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29047</identifier><identifier>PMID: 34655095</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>3D multislab ; Algorithms ; Artificial neural networks ; Brain - diagnostic imaging ; deep learning ; Functional magnetic resonance imaging ; Humans ; Image acquisition ; Image Processing, Computer-Assisted ; Inverse problems ; Inversion ; Iterative algorithms ; Iterative methods ; Magnetic Resonance Imaging ; model‐based CNN ; Neural networks ; Neural Networks, Computer ; Robustness (mathematics) ; simultaneous multislab ; slab boundary artifacts</subject><ispartof>Magnetic resonance in medicine, 2022-03, Vol.87 (3), p.1546-1560</ispartof><rights>2021 International Society for Magnetic Resonance in Medicine</rights><rights>2021 International Society for Magnetic Resonance in Medicine.</rights><rights>2022 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3537-425bca4160c5774958b4828f3e93e918df6d2e7efe7eb407f2564f98ad6c91073</citedby><cites>FETCH-LOGICAL-c3537-425bca4160c5774958b4828f3e93e918df6d2e7efe7eb407f2564f98ad6c91073</cites><orcidid>0000-0002-0482-1493 ; 0000-0002-1032-5883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.29047$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.29047$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34655095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jieying</creatorcontrib><creatorcontrib>Liu, Simin</creatorcontrib><creatorcontrib>Dai, Erpeng</creatorcontrib><creatorcontrib>Ye, Xinyu</creatorcontrib><creatorcontrib>Shi, Diwei</creatorcontrib><creatorcontrib>Wu, Yuhsuan</creatorcontrib><creatorcontrib>Lu, Jie</creatorcontrib><creatorcontrib>Guo, Hua</creatorcontrib><title>Slab boundary artifact correction in multislab imaging using convolutional‐neural‐network–enabled inversion for slab profile encoding</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose This study aims to propose a novel algorithm for slab boundary artifact correction in both single‐band multislab imaging and simultaneous multislab (SMSlab) imaging. Theory and Methods In image domain, the formation of slab boundary artifacts can be regarded as modulating the artifact‐free images using the slab profiles and introducing aliasing along the slice direction. Slab boundary artifact correction is the inverse problem of this process. An iterative algorithm based on convolutional neural networks (CNNs) is proposed to solve the problem, termed CNN‐enabled inversion for slab profile encoding (CPEN). Diffusion‐weighted SMSlab images and reference images without slab boundary artifacts were acquired in 7 healthy subjects for training. Images of 5 healthy subjects were acquired for testing, including single‐band multislab and SMSlab images with 1.3‐mm or 1‐mm isotropic resolution. CNN‐enabled inversion for slab profile encoding was compared with a previously reported method (i.e., nonlinear inversion for slab profile encoding [NPEN]). Results CNN‐enabled inversion for slab profile encoding reduces the slab boundary artifacts in both single‐band multislab and SMSlab images. It also suppresses the slab boundary artifacts in the diffusion metric maps. Compared with NPEN, CPEN shows fewer residual artifacts in different acquisition protocols and more significant improvements in quantitative assessment, and it also accelerates the computation by more than 35 times. Conclusion CNN‐enabled inversion for slab profile encoding can reduce the slab boundary artifacts in multislab acquisitions. It shows better slab boundary artifact correction capacity, higher robustness, and computation efficiency when compared with NPEN. It has the potential to improve the accuracy of multislab acquisitions in high‐resolution DWI and functional MRI.</description><subject>3D multislab</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain - diagnostic imaging</subject><subject>deep learning</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image Processing, Computer-Assisted</subject><subject>Inverse problems</subject><subject>Inversion</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Magnetic Resonance Imaging</subject><subject>model‐based CNN</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Robustness (mathematics)</subject><subject>simultaneous multislab</subject><subject>slab boundary artifacts</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1LBSEUhiWKun0s-gMx0KYWU-roOC4j-oIi6GM9OI7GlKOlY3F37dsE_cN-SU731iIIjkcXDw_H8wKwieAeghDv977fwxwStgAmiGKcY8rJIphARmBeIE5WwGoI9xBCzhlZBisFKSmFnE7A27URTda4aFvhp5nwQ6eFHDLpvFdy6JzNOpv10QxdGMmuF3edvctiGLt09tmZOGLCfL6-WxX9_DG8OP_w-fqhrGiMapPlWfkw-rTz2bfr0TvdGZUpK12bdOtgSQsT1Mb8XgO3x0c3h6f5-eXJ2eHBeS4LWrCcYNpIQVAJJWWMcFo1pMKVLhRPhapWly1WTOl0GgKZxrQkmleiLSVHkBVrYGfmTQM8RRWGuu-CVMYIq1wMNaZJhxBGOKHbf9B7F336bKJKnBiGKpSo3RklvQvBK10_-rQoP60RrMeE6pRQ_Z1QYrfmxtj0qv0lfyJJwP4MeEm7mf5vqi-uLmbKL3iloD8</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Zhang, Jieying</creator><creator>Liu, Simin</creator><creator>Dai, Erpeng</creator><creator>Ye, Xinyu</creator><creator>Shi, Diwei</creator><creator>Wu, Yuhsuan</creator><creator>Lu, Jie</creator><creator>Guo, Hua</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0482-1493</orcidid><orcidid>https://orcid.org/0000-0002-1032-5883</orcidid></search><sort><creationdate>202203</creationdate><title>Slab boundary artifact correction in multislab imaging using convolutional‐neural‐network–enabled inversion for slab profile encoding</title><author>Zhang, Jieying ; Liu, Simin ; Dai, Erpeng ; Ye, Xinyu ; Shi, Diwei ; Wu, Yuhsuan ; Lu, Jie ; Guo, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-425bca4160c5774958b4828f3e93e918df6d2e7efe7eb407f2564f98ad6c91073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D multislab</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain - diagnostic imaging</topic><topic>deep learning</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image Processing, Computer-Assisted</topic><topic>Inverse problems</topic><topic>Inversion</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Magnetic Resonance Imaging</topic><topic>model‐based CNN</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Robustness (mathematics)</topic><topic>simultaneous multislab</topic><topic>slab boundary artifacts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jieying</creatorcontrib><creatorcontrib>Liu, Simin</creatorcontrib><creatorcontrib>Dai, Erpeng</creatorcontrib><creatorcontrib>Ye, Xinyu</creatorcontrib><creatorcontrib>Shi, Diwei</creatorcontrib><creatorcontrib>Wu, Yuhsuan</creatorcontrib><creatorcontrib>Lu, Jie</creatorcontrib><creatorcontrib>Guo, Hua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jieying</au><au>Liu, Simin</au><au>Dai, Erpeng</au><au>Ye, Xinyu</au><au>Shi, Diwei</au><au>Wu, Yuhsuan</au><au>Lu, Jie</au><au>Guo, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slab boundary artifact correction in multislab imaging using convolutional‐neural‐network–enabled inversion for slab profile encoding</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2022-03</date><risdate>2022</risdate><volume>87</volume><issue>3</issue><spage>1546</spage><epage>1560</epage><pages>1546-1560</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose This study aims to propose a novel algorithm for slab boundary artifact correction in both single‐band multislab imaging and simultaneous multislab (SMSlab) imaging. Theory and Methods In image domain, the formation of slab boundary artifacts can be regarded as modulating the artifact‐free images using the slab profiles and introducing aliasing along the slice direction. Slab boundary artifact correction is the inverse problem of this process. An iterative algorithm based on convolutional neural networks (CNNs) is proposed to solve the problem, termed CNN‐enabled inversion for slab profile encoding (CPEN). Diffusion‐weighted SMSlab images and reference images without slab boundary artifacts were acquired in 7 healthy subjects for training. Images of 5 healthy subjects were acquired for testing, including single‐band multislab and SMSlab images with 1.3‐mm or 1‐mm isotropic resolution. CNN‐enabled inversion for slab profile encoding was compared with a previously reported method (i.e., nonlinear inversion for slab profile encoding [NPEN]). Results CNN‐enabled inversion for slab profile encoding reduces the slab boundary artifacts in both single‐band multislab and SMSlab images. It also suppresses the slab boundary artifacts in the diffusion metric maps. Compared with NPEN, CPEN shows fewer residual artifacts in different acquisition protocols and more significant improvements in quantitative assessment, and it also accelerates the computation by more than 35 times. Conclusion CNN‐enabled inversion for slab profile encoding can reduce the slab boundary artifacts in multislab acquisitions. It shows better slab boundary artifact correction capacity, higher robustness, and computation efficiency when compared with NPEN. It has the potential to improve the accuracy of multislab acquisitions in high‐resolution DWI and functional MRI.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34655095</pmid><doi>10.1002/mrm.29047</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0482-1493</orcidid><orcidid>https://orcid.org/0000-0002-1032-5883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2022-03, Vol.87 (3), p.1546-1560
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2582811212
source MEDLINE; Access via Wiley Online Library
subjects 3D multislab
Algorithms
Artificial neural networks
Brain - diagnostic imaging
deep learning
Functional magnetic resonance imaging
Humans
Image acquisition
Image Processing, Computer-Assisted
Inverse problems
Inversion
Iterative algorithms
Iterative methods
Magnetic Resonance Imaging
model‐based CNN
Neural networks
Neural Networks, Computer
Robustness (mathematics)
simultaneous multislab
slab boundary artifacts
title Slab boundary artifact correction in multislab imaging using convolutional‐neural‐network–enabled inversion for slab profile encoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slab%20boundary%20artifact%20correction%20in%20multislab%20imaging%20using%20convolutional%E2%80%90neural%E2%80%90network%E2%80%93enabled%20inversion%20for%20slab%20profile%20encoding&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Zhang,%20Jieying&rft.date=2022-03&rft.volume=87&rft.issue=3&rft.spage=1546&rft.epage=1560&rft.pages=1546-1560&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29047&rft_dat=%3Cproquest_cross%3E2621127181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621127181&rft_id=info:pmid/34655095&rfr_iscdi=true