Machine-learning algorithms predict breast cancer patient survival from UK Biobank whole-exome sequencing data
We tested whether machine-learning algorithm could find biomarkers predicting overall survival in breast cancer patients using blood-based whole-exome sequencing data. Whole-exome sequencing data derived from 1181 female breast cancer patients within the UK Biobank was collected. We found feature ge...
Gespeichert in:
Veröffentlicht in: | Biomarkers in medicine 2021-11, Vol.15 (16), p.1529-1539 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1539 |
---|---|
container_issue | 16 |
container_start_page | 1529 |
container_title | Biomarkers in medicine |
container_volume | 15 |
creator | Jang, Bum-Sup Kim, In Ah |
description | We tested whether machine-learning algorithm could find biomarkers predicting overall survival in breast cancer patients using blood-based whole-exome sequencing data.
Whole-exome sequencing data derived from 1181 female breast cancer patients within the UK Biobank was collected. We found feature genes (n = 50) regarding total mutation burden using the long short-term memory model. Then, we developed the XGBoost survival model with selected feature genes.
The XGBoost survival model performed acceptably, with a concordance index of 0.75 and a scaled Brier score of 0.146 in terms of overall survival prediction. The high-mutation group exhibited inferior overall survival compared with the low-mutation group in patients ≥56 years (log-rank test, p = 0.042).
We showed that machine-learning algorithms can be used to predict overall survival in breast cancer patients from blood-based whole-exome sequencing data. |
doi_str_mv | 10.2217/bmm-2021-0280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582807073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582807073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-880669f2fc67a539284afd146ee9e3ec10a6a05dcdf41b53a89578f0c786afbf3</originalsourceid><addsrcrecordid>eNp10Dtv1TAYh_EIUdFSGFmRRxaDL8eXjFBxE61Y2tl647zuMcTOwXYKfPsmOqUbk23p0V_Wr-tecfZWCG7eDSlRwQSnTFj2pDvjRgnKpOFPH-9annbPa_3BmDJGi2fdqdxpxRWXZ12-Ar-PGemEUHLMtwSm27nEtk-VHAqO0TcyFITaiIfssZADtIi5kbqUu3gHEwllTuTmG_kQ5wHyT_J7P09I8c-ckFT8tWD22_AIDV50JwGmii8fzvPu5tPH64sv9PL7568X7y-pl1Y0ai3Tug8ieG1AyV7YHYSR7zRijxI9Z6CBqdGPYccHJcH2ytjAvLEawhDkeffmuHso8_qB2lyK1eM0QcZ5qU4ou3IZZuSa0mPqy1xrweAOJSYofx1nbiN2K7HbiN1GvPavH6aXIeH4WP8zXYP-GISlLQWrX7U8uuMrbaKr93_G7wEcOYyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582807073</pqid></control><display><type>article</type><title>Machine-learning algorithms predict breast cancer patient survival from UK Biobank whole-exome sequencing data</title><source>PubMed Central</source><creator>Jang, Bum-Sup ; Kim, In Ah</creator><creatorcontrib>Jang, Bum-Sup ; Kim, In Ah</creatorcontrib><description>We tested whether machine-learning algorithm could find biomarkers predicting overall survival in breast cancer patients using blood-based whole-exome sequencing data.
Whole-exome sequencing data derived from 1181 female breast cancer patients within the UK Biobank was collected. We found feature genes (n = 50) regarding total mutation burden using the long short-term memory model. Then, we developed the XGBoost survival model with selected feature genes.
The XGBoost survival model performed acceptably, with a concordance index of 0.75 and a scaled Brier score of 0.146 in terms of overall survival prediction. The high-mutation group exhibited inferior overall survival compared with the low-mutation group in patients ≥56 years (log-rank test, p = 0.042).
We showed that machine-learning algorithms can be used to predict overall survival in breast cancer patients from blood-based whole-exome sequencing data.</description><identifier>ISSN: 1752-0363</identifier><identifier>EISSN: 1752-0371</identifier><identifier>DOI: 10.2217/bmm-2021-0280</identifier><identifier>PMID: 34651513</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>breast cancer ; machine learning ; UK Biobank ; whole-exome sequencing</subject><ispartof>Biomarkers in medicine, 2021-11, Vol.15 (16), p.1529-1539</ispartof><rights>2021 Future Medicine Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-880669f2fc67a539284afd146ee9e3ec10a6a05dcdf41b53a89578f0c786afbf3</citedby><cites>FETCH-LOGICAL-c382t-880669f2fc67a539284afd146ee9e3ec10a6a05dcdf41b53a89578f0c786afbf3</cites><orcidid>0000-0002-7064-9855 ; 0000-0001-9838-5399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34651513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Bum-Sup</creatorcontrib><creatorcontrib>Kim, In Ah</creatorcontrib><title>Machine-learning algorithms predict breast cancer patient survival from UK Biobank whole-exome sequencing data</title><title>Biomarkers in medicine</title><addtitle>Biomark Med</addtitle><description>We tested whether machine-learning algorithm could find biomarkers predicting overall survival in breast cancer patients using blood-based whole-exome sequencing data.
Whole-exome sequencing data derived from 1181 female breast cancer patients within the UK Biobank was collected. We found feature genes (n = 50) regarding total mutation burden using the long short-term memory model. Then, we developed the XGBoost survival model with selected feature genes.
The XGBoost survival model performed acceptably, with a concordance index of 0.75 and a scaled Brier score of 0.146 in terms of overall survival prediction. The high-mutation group exhibited inferior overall survival compared with the low-mutation group in patients ≥56 years (log-rank test, p = 0.042).
We showed that machine-learning algorithms can be used to predict overall survival in breast cancer patients from blood-based whole-exome sequencing data.</description><subject>breast cancer</subject><subject>machine learning</subject><subject>UK Biobank</subject><subject>whole-exome sequencing</subject><issn>1752-0363</issn><issn>1752-0371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10Dtv1TAYh_EIUdFSGFmRRxaDL8eXjFBxE61Y2tl647zuMcTOwXYKfPsmOqUbk23p0V_Wr-tecfZWCG7eDSlRwQSnTFj2pDvjRgnKpOFPH-9annbPa_3BmDJGi2fdqdxpxRWXZ12-Ar-PGemEUHLMtwSm27nEtk-VHAqO0TcyFITaiIfssZADtIi5kbqUu3gHEwllTuTmG_kQ5wHyT_J7P09I8c-ckFT8tWD22_AIDV50JwGmii8fzvPu5tPH64sv9PL7568X7y-pl1Y0ai3Tug8ieG1AyV7YHYSR7zRijxI9Z6CBqdGPYccHJcH2ytjAvLEawhDkeffmuHso8_qB2lyK1eM0QcZ5qU4ou3IZZuSa0mPqy1xrweAOJSYofx1nbiN2K7HbiN1GvPavH6aXIeH4WP8zXYP-GISlLQWrX7U8uuMrbaKr93_G7wEcOYyw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Jang, Bum-Sup</creator><creator>Kim, In Ah</creator><general>Future Medicine Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7064-9855</orcidid><orcidid>https://orcid.org/0000-0001-9838-5399</orcidid></search><sort><creationdate>20211101</creationdate><title>Machine-learning algorithms predict breast cancer patient survival from UK Biobank whole-exome sequencing data</title><author>Jang, Bum-Sup ; Kim, In Ah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-880669f2fc67a539284afd146ee9e3ec10a6a05dcdf41b53a89578f0c786afbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>breast cancer</topic><topic>machine learning</topic><topic>UK Biobank</topic><topic>whole-exome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Bum-Sup</creatorcontrib><creatorcontrib>Kim, In Ah</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomarkers in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Bum-Sup</au><au>Kim, In Ah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-learning algorithms predict breast cancer patient survival from UK Biobank whole-exome sequencing data</atitle><jtitle>Biomarkers in medicine</jtitle><addtitle>Biomark Med</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>15</volume><issue>16</issue><spage>1529</spage><epage>1539</epage><pages>1529-1539</pages><issn>1752-0363</issn><eissn>1752-0371</eissn><abstract>We tested whether machine-learning algorithm could find biomarkers predicting overall survival in breast cancer patients using blood-based whole-exome sequencing data.
Whole-exome sequencing data derived from 1181 female breast cancer patients within the UK Biobank was collected. We found feature genes (n = 50) regarding total mutation burden using the long short-term memory model. Then, we developed the XGBoost survival model with selected feature genes.
The XGBoost survival model performed acceptably, with a concordance index of 0.75 and a scaled Brier score of 0.146 in terms of overall survival prediction. The high-mutation group exhibited inferior overall survival compared with the low-mutation group in patients ≥56 years (log-rank test, p = 0.042).
We showed that machine-learning algorithms can be used to predict overall survival in breast cancer patients from blood-based whole-exome sequencing data.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>34651513</pmid><doi>10.2217/bmm-2021-0280</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7064-9855</orcidid><orcidid>https://orcid.org/0000-0001-9838-5399</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0363 |
ispartof | Biomarkers in medicine, 2021-11, Vol.15 (16), p.1529-1539 |
issn | 1752-0363 1752-0371 |
language | eng |
recordid | cdi_proquest_miscellaneous_2582807073 |
source | PubMed Central |
subjects | breast cancer machine learning UK Biobank whole-exome sequencing |
title | Machine-learning algorithms predict breast cancer patient survival from UK Biobank whole-exome sequencing data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-learning%20algorithms%20predict%20breast%20cancer%20patient%20survival%20from%20UK%20Biobank%20whole-exome%20sequencing%20data&rft.jtitle=Biomarkers%20in%20medicine&rft.au=Jang,%20Bum-Sup&rft.date=2021-11-01&rft.volume=15&rft.issue=16&rft.spage=1529&rft.epage=1539&rft.pages=1529-1539&rft.issn=1752-0363&rft.eissn=1752-0371&rft_id=info:doi/10.2217/bmm-2021-0280&rft_dat=%3Cproquest_cross%3E2582807073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582807073&rft_id=info:pmid/34651513&rfr_iscdi=true |