A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy
Improving photothermal conversion efficiency (PCE) is critical to facilitate therapeutic performance during photothermal therapy (PTT). However, current strategies of prompting PCE always involve complex synthesis or modification of photothermal agents, thereby significantly inhibiting the practical...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-12, Vol.33 (51), p.e2105999-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 51 |
container_start_page | e2105999 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Li, Jie Wang, Jianxing Zhang, Jianyu Han, Ting Hu, Xiyao Lee, Michelle M. S. Wang, Dong Tang, Ben Zhong |
description | Improving photothermal conversion efficiency (PCE) is critical to facilitate therapeutic performance during photothermal therapy (PTT). However, current strategies of prompting PCE always involve complex synthesis or modification of photothermal agents, thereby significantly inhibiting the practical applications and fundamental understanding of photothermal conversion. A facile strategy is herein present for boosting PCE by transforming photothermal agents from aggregated state to dispersed state. Compared to aggregated state, the developed photothermal agents with semiconducting nature can rotate freely in dispersed state, which allows for an efficient nonradiative dissipation through twisted intramolecular charge transfer (TICT) effect, consequentially offering excellent photothermal performance. Noteworthy, the state transformation can be achieved by virtue of releasing photothermal molecules from nanoparticles on the basis of a pH‐responsive polymer nanocarrier, and the PCE is elevated from 43% to 60% upon changing the pH values from 7.4 to 5.0. Moreover, the nanoparticle disassembly and state transformation behaviors can also smoothly proceed in lysosome of cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation. It is hoped that this strategy of transforming state to boost PCE would be a new platform for practical applications of PTT technique.
A facile strategy of improving photothermal conversion efficiency (PCE) is presented through transforming photothermal agents from aggregated to dispersed state, where the intramolecular motions are completely liberated, allowing for supra‐efficient heat generation. This state transformation can be achieved by virtue of a releasing process from nanoparticles in cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation. |
doi_str_mv | 10.1002/adma.202105999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582807064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582807064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4799-7f5255949dcd007262ddd380f5b34b6963908e62e7fd911f70325cb3210331213</originalsourceid><addsrcrecordid>eNqFkUFv2yAYhlHVac26XXuckHrZxdkHGGyOWZp0k1K1UrMzIhgSR7bJwO7kfz-itJ3US098h-d9hN4XoSsCUwJAv-uq1VMKlACXUp6hCeGUZDlIfo4mIBnPpMjLC_Qpxj0ASAHiI7pgueCECTJBhxlealM3Fj_2Qfd2O2Lv8A_vY193W_yw873vdza0usFz3z3ZEGvf4YVztaltZ0bc74IftruUT3G8DrqLzie-P3LpwnPdGRvwOln0YfyMPjjdRPvl-b1Ev5eL9fxntrq__TWfrTKTF1JmheOUc5nLylQABRW0qipWguMblm-EFExCaQW1haskIa4ARrnZsFQEY4QSdom-nbyH4P8MNvaqraOxTaM764eoKC9pCQWIPKHXb9C9H0KXfqeoIJRKLkSRqOmJMsHHGKxTh1C3OoyKgDpuoY5bqNctUuDrs3bYtLZ6xV_KT4A8AX9T_-M7OjW7uZv9l_8D6juU5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612295667</pqid></control><display><type>article</type><title>A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Li, Jie ; Wang, Jianxing ; Zhang, Jianyu ; Han, Ting ; Hu, Xiyao ; Lee, Michelle M. S. ; Wang, Dong ; Tang, Ben Zhong</creator><creatorcontrib>Li, Jie ; Wang, Jianxing ; Zhang, Jianyu ; Han, Ting ; Hu, Xiyao ; Lee, Michelle M. S. ; Wang, Dong ; Tang, Ben Zhong</creatorcontrib><description>Improving photothermal conversion efficiency (PCE) is critical to facilitate therapeutic performance during photothermal therapy (PTT). However, current strategies of prompting PCE always involve complex synthesis or modification of photothermal agents, thereby significantly inhibiting the practical applications and fundamental understanding of photothermal conversion. A facile strategy is herein present for boosting PCE by transforming photothermal agents from aggregated state to dispersed state. Compared to aggregated state, the developed photothermal agents with semiconducting nature can rotate freely in dispersed state, which allows for an efficient nonradiative dissipation through twisted intramolecular charge transfer (TICT) effect, consequentially offering excellent photothermal performance. Noteworthy, the state transformation can be achieved by virtue of releasing photothermal molecules from nanoparticles on the basis of a pH‐responsive polymer nanocarrier, and the PCE is elevated from 43% to 60% upon changing the pH values from 7.4 to 5.0. Moreover, the nanoparticle disassembly and state transformation behaviors can also smoothly proceed in lysosome of cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation. It is hoped that this strategy of transforming state to boost PCE would be a new platform for practical applications of PTT technique.
A facile strategy of improving photothermal conversion efficiency (PCE) is presented through transforming photothermal agents from aggregated to dispersed state, where the intramolecular motions are completely liberated, allowing for supra‐efficient heat generation. This state transformation can be achieved by virtue of a releasing process from nanoparticles in cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202105999</identifier><identifier>PMID: 34651361</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ablation ; aggregation‐induced emission ; Cancer ; cancer theranostics ; Cell Line, Tumor ; Charge transfer ; Dispersion ; Humans ; Hydrogen-Ion Concentration ; Materials science ; molecular motions ; Nanoparticles ; Nanoparticles - chemistry ; Neoplasms - therapy ; Phototherapy ; Photothermal conversion ; Photothermal Therapy ; Polymers - chemistry ; state transformation ; Transformations</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (51), p.e2105999-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4799-7f5255949dcd007262ddd380f5b34b6963908e62e7fd911f70325cb3210331213</citedby><cites>FETCH-LOGICAL-c4799-7f5255949dcd007262ddd380f5b34b6963908e62e7fd911f70325cb3210331213</cites><orcidid>0000-0002-0293-964X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202105999$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202105999$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34651361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Wang, Jianxing</creatorcontrib><creatorcontrib>Zhang, Jianyu</creatorcontrib><creatorcontrib>Han, Ting</creatorcontrib><creatorcontrib>Hu, Xiyao</creatorcontrib><creatorcontrib>Lee, Michelle M. S.</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><title>A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Improving photothermal conversion efficiency (PCE) is critical to facilitate therapeutic performance during photothermal therapy (PTT). However, current strategies of prompting PCE always involve complex synthesis or modification of photothermal agents, thereby significantly inhibiting the practical applications and fundamental understanding of photothermal conversion. A facile strategy is herein present for boosting PCE by transforming photothermal agents from aggregated state to dispersed state. Compared to aggregated state, the developed photothermal agents with semiconducting nature can rotate freely in dispersed state, which allows for an efficient nonradiative dissipation through twisted intramolecular charge transfer (TICT) effect, consequentially offering excellent photothermal performance. Noteworthy, the state transformation can be achieved by virtue of releasing photothermal molecules from nanoparticles on the basis of a pH‐responsive polymer nanocarrier, and the PCE is elevated from 43% to 60% upon changing the pH values from 7.4 to 5.0. Moreover, the nanoparticle disassembly and state transformation behaviors can also smoothly proceed in lysosome of cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation. It is hoped that this strategy of transforming state to boost PCE would be a new platform for practical applications of PTT technique.
A facile strategy of improving photothermal conversion efficiency (PCE) is presented through transforming photothermal agents from aggregated to dispersed state, where the intramolecular motions are completely liberated, allowing for supra‐efficient heat generation. This state transformation can be achieved by virtue of a releasing process from nanoparticles in cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation.</description><subject>Ablation</subject><subject>aggregation‐induced emission</subject><subject>Cancer</subject><subject>cancer theranostics</subject><subject>Cell Line, Tumor</subject><subject>Charge transfer</subject><subject>Dispersion</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Materials science</subject><subject>molecular motions</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasms - therapy</subject><subject>Phototherapy</subject><subject>Photothermal conversion</subject><subject>Photothermal Therapy</subject><subject>Polymers - chemistry</subject><subject>state transformation</subject><subject>Transformations</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv2yAYhlHVac26XXuckHrZxdkHGGyOWZp0k1K1UrMzIhgSR7bJwO7kfz-itJ3US098h-d9hN4XoSsCUwJAv-uq1VMKlACXUp6hCeGUZDlIfo4mIBnPpMjLC_Qpxj0ASAHiI7pgueCECTJBhxlealM3Fj_2Qfd2O2Lv8A_vY193W_yw873vdza0usFz3z3ZEGvf4YVztaltZ0bc74IftruUT3G8DrqLzie-P3LpwnPdGRvwOln0YfyMPjjdRPvl-b1Ev5eL9fxntrq__TWfrTKTF1JmheOUc5nLylQABRW0qipWguMblm-EFExCaQW1haskIa4ARrnZsFQEY4QSdom-nbyH4P8MNvaqraOxTaM764eoKC9pCQWIPKHXb9C9H0KXfqeoIJRKLkSRqOmJMsHHGKxTh1C3OoyKgDpuoY5bqNctUuDrs3bYtLZ6xV_KT4A8AX9T_-M7OjW7uZv9l_8D6juU5w</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Li, Jie</creator><creator>Wang, Jianxing</creator><creator>Zhang, Jianyu</creator><creator>Han, Ting</creator><creator>Hu, Xiyao</creator><creator>Lee, Michelle M. S.</creator><creator>Wang, Dong</creator><creator>Tang, Ben Zhong</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid></search><sort><creationdate>20211201</creationdate><title>A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy</title><author>Li, Jie ; Wang, Jianxing ; Zhang, Jianyu ; Han, Ting ; Hu, Xiyao ; Lee, Michelle M. S. ; Wang, Dong ; Tang, Ben Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4799-7f5255949dcd007262ddd380f5b34b6963908e62e7fd911f70325cb3210331213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>aggregation‐induced emission</topic><topic>Cancer</topic><topic>cancer theranostics</topic><topic>Cell Line, Tumor</topic><topic>Charge transfer</topic><topic>Dispersion</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Materials science</topic><topic>molecular motions</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasms - therapy</topic><topic>Phototherapy</topic><topic>Photothermal conversion</topic><topic>Photothermal Therapy</topic><topic>Polymers - chemistry</topic><topic>state transformation</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Wang, Jianxing</creatorcontrib><creatorcontrib>Zhang, Jianyu</creatorcontrib><creatorcontrib>Han, Ting</creatorcontrib><creatorcontrib>Hu, Xiyao</creatorcontrib><creatorcontrib>Lee, Michelle M. S.</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jie</au><au>Wang, Jianxing</au><au>Zhang, Jianyu</au><au>Han, Ting</au><au>Hu, Xiyao</au><au>Lee, Michelle M. S.</au><au>Wang, Dong</au><au>Tang, Ben Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>51</issue><spage>e2105999</spage><epage>n/a</epage><pages>e2105999-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Improving photothermal conversion efficiency (PCE) is critical to facilitate therapeutic performance during photothermal therapy (PTT). However, current strategies of prompting PCE always involve complex synthesis or modification of photothermal agents, thereby significantly inhibiting the practical applications and fundamental understanding of photothermal conversion. A facile strategy is herein present for boosting PCE by transforming photothermal agents from aggregated state to dispersed state. Compared to aggregated state, the developed photothermal agents with semiconducting nature can rotate freely in dispersed state, which allows for an efficient nonradiative dissipation through twisted intramolecular charge transfer (TICT) effect, consequentially offering excellent photothermal performance. Noteworthy, the state transformation can be achieved by virtue of releasing photothermal molecules from nanoparticles on the basis of a pH‐responsive polymer nanocarrier, and the PCE is elevated from 43% to 60% upon changing the pH values from 7.4 to 5.0. Moreover, the nanoparticle disassembly and state transformation behaviors can also smoothly proceed in lysosome of cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation. It is hoped that this strategy of transforming state to boost PCE would be a new platform for practical applications of PTT technique.
A facile strategy of improving photothermal conversion efficiency (PCE) is presented through transforming photothermal agents from aggregated to dispersed state, where the intramolecular motions are completely liberated, allowing for supra‐efficient heat generation. This state transformation can be achieved by virtue of a releasing process from nanoparticles in cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34651361</pmid><doi>10.1002/adma.202105999</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-12, Vol.33 (51), p.e2105999-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2582807064 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Ablation aggregation‐induced emission Cancer cancer theranostics Cell Line, Tumor Charge transfer Dispersion Humans Hydrogen-Ion Concentration Materials science molecular motions Nanoparticles Nanoparticles - chemistry Neoplasms - therapy Phototherapy Photothermal conversion Photothermal Therapy Polymers - chemistry state transformation Transformations |
title | A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Facile%20Strategy%20of%20Boosting%20Photothermal%20Conversion%20Efficiency%20through%20State%20Transformation%20for%20Cancer%20Therapy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Jie&rft.date=2021-12-01&rft.volume=33&rft.issue=51&rft.spage=e2105999&rft.epage=n/a&rft.pages=e2105999-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202105999&rft_dat=%3Cproquest_cross%3E2582807064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612295667&rft_id=info:pmid/34651361&rfr_iscdi=true |