Biomechanics of vascular areas of the human cranial dura mater

Accurate biomechanical properties of the human cranial dura mater are paramount for computational head models, artificial graft developments and biomechanical basic research. Yet, it is unclear whether areas of the dura containing meningeal vessels biomechanically differ from avascular areas. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2022-01, Vol.125, p.104866-104866, Article 104866
Hauptverfasser: Pearcy, Q., Jeejo, M., Scholze, M., Tomlinson, J., Dressler, J., Zhang, M., Zwirner, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104866
container_issue
container_start_page 104866
container_title Journal of the mechanical behavior of biomedical materials
container_volume 125
creator Pearcy, Q.
Jeejo, M.
Scholze, M.
Tomlinson, J.
Dressler, J.
Zhang, M.
Zwirner, J.
description Accurate biomechanical properties of the human cranial dura mater are paramount for computational head models, artificial graft developments and biomechanical basic research. Yet, it is unclear whether areas of the dura containing meningeal vessels biomechanically differ from avascular areas. Here, 244 dura mater samples with or without vessels from 32 cadavers were tested in a quasi-static uniaxial tensile testing setup. The thicknesses of the meningeal and periosteal dura in vascular and avascular areas were histologically investigated in 36 samples using van Gieson staining. The elastic modulus of 112 MPa from dura samples containing vessels running transversely was significantly lower than samples with vessels running longitudinally (151 MPa; p 
doi_str_mv 10.1016/j.jmbbm.2021.104866
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582806905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616121005038</els_id><sourcerecordid>2582806905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-16e35a72c044d394948fe9c51936b6b5e0cc030b7f2b49d054125797eb0e11433</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRrFZ_gSA5ekmdzX5k96CgxS8oeNHzstlMaEI-6m5S8N-bNtWjpxmG551hHkKuKCwoUHlbLaomy5pFAgkdJ1xJeUTOqEpVDFTB8dingsaSSjoj5yFUABJAqVMyY1wKoTk7I_ePZdegW9u2dCHqimhrgxtq6yPr0e4n_Rqj9dDYNnJ-xGwd5YO3UWN79BfkpLB1wMtDnZPP56eP5Wu8en95Wz6sYseE7mMqkQmbJg44z5nmmqsCtRNUM5nJTCA4BwyytEgyrnMQnCYi1SlmgJRyxubkZtq78d3XgKE3TRkc1rVtsRuCSYRKFEgNYkTZhDrfheCxMBtfNtZ_GwpmJ85UZi_O7MSZSdyYuj4cGLIG87_Mr6kRuJsAHN_cluhNcCW2DvPSo-tN3pX_HvgBREp9lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582806905</pqid></control><display><type>article</type><title>Biomechanics of vascular areas of the human cranial dura mater</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pearcy, Q. ; Jeejo, M. ; Scholze, M. ; Tomlinson, J. ; Dressler, J. ; Zhang, M. ; Zwirner, J.</creator><creatorcontrib>Pearcy, Q. ; Jeejo, M. ; Scholze, M. ; Tomlinson, J. ; Dressler, J. ; Zhang, M. ; Zwirner, J.</creatorcontrib><description>Accurate biomechanical properties of the human cranial dura mater are paramount for computational head models, artificial graft developments and biomechanical basic research. Yet, it is unclear whether areas of the dura containing meningeal vessels biomechanically differ from avascular areas. Here, 244 dura mater samples with or without vessels from 32 cadavers were tested in a quasi-static uniaxial tensile testing setup. The thicknesses of the meningeal and periosteal dura in vascular and avascular areas were histologically investigated in 36 samples using van Gieson staining. The elastic modulus of 112 MPa from dura samples containing vessels running transversely was significantly lower than samples with vessels running longitudinally (151 MPa; p &lt; 0.001). The ultimate tensile strength of dura samples with transversely running vessels (11.1 MPa) was significantly lower in comparison to both avascular samples (14.9 MPa; p &lt; 0.001) and samples with a longitudinally running vessel (15.0 MPa; p &lt; 0.001). The maximum force of dura samples with longitudinally running vessels was 37 N (p &lt; 0.001), this was significantly higher compared to the other groups which were 23 N (p &lt; 0.001). The meningeal and periosteal dura layer thicknesses were not statistically different in avascular areas (p &gt; 0.222). However, around the vessels, the meningeal dura layer was significantly thicker compared to the periosteal layer (p ≤ 0.019). The sum of the meningeal and periosteal layers was similar between vascular and avascular areas (p ≥ 0.071). Vascular areas of the human cranial dura mater withstand the same forces as avascular areas when being stretched. When stretched along the vessel, the dura-vessel composite can withstand even higher tensile forces compared to avascular areas. Vascular areas of the cranial dura mater seem to be similar when compared to avascular areas making their separate simulation in computational models non-essential.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2021.104866</identifier><identifier>PMID: 34655943</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Biomechanical Phenomena ; Biomechanical properties ; Biophysics ; Dura Mater ; Humans ; Middle meningeal artery ; Regional variation ; Skull ; Tensile Strength ; Vascularization ; Vessel biomechanics</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2022-01, Vol.125, p.104866-104866, Article 104866</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-16e35a72c044d394948fe9c51936b6b5e0cc030b7f2b49d054125797eb0e11433</citedby><cites>FETCH-LOGICAL-c359t-16e35a72c044d394948fe9c51936b6b5e0cc030b7f2b49d054125797eb0e11433</cites><orcidid>0000-0002-0120-2478 ; 0000-0002-9509-071X ; 0000-0002-1215-8935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmbbm.2021.104866$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34655943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pearcy, Q.</creatorcontrib><creatorcontrib>Jeejo, M.</creatorcontrib><creatorcontrib>Scholze, M.</creatorcontrib><creatorcontrib>Tomlinson, J.</creatorcontrib><creatorcontrib>Dressler, J.</creatorcontrib><creatorcontrib>Zhang, M.</creatorcontrib><creatorcontrib>Zwirner, J.</creatorcontrib><title>Biomechanics of vascular areas of the human cranial dura mater</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Accurate biomechanical properties of the human cranial dura mater are paramount for computational head models, artificial graft developments and biomechanical basic research. Yet, it is unclear whether areas of the dura containing meningeal vessels biomechanically differ from avascular areas. Here, 244 dura mater samples with or without vessels from 32 cadavers were tested in a quasi-static uniaxial tensile testing setup. The thicknesses of the meningeal and periosteal dura in vascular and avascular areas were histologically investigated in 36 samples using van Gieson staining. The elastic modulus of 112 MPa from dura samples containing vessels running transversely was significantly lower than samples with vessels running longitudinally (151 MPa; p &lt; 0.001). The ultimate tensile strength of dura samples with transversely running vessels (11.1 MPa) was significantly lower in comparison to both avascular samples (14.9 MPa; p &lt; 0.001) and samples with a longitudinally running vessel (15.0 MPa; p &lt; 0.001). The maximum force of dura samples with longitudinally running vessels was 37 N (p &lt; 0.001), this was significantly higher compared to the other groups which were 23 N (p &lt; 0.001). The meningeal and periosteal dura layer thicknesses were not statistically different in avascular areas (p &gt; 0.222). However, around the vessels, the meningeal dura layer was significantly thicker compared to the periosteal layer (p ≤ 0.019). The sum of the meningeal and periosteal layers was similar between vascular and avascular areas (p ≥ 0.071). Vascular areas of the human cranial dura mater withstand the same forces as avascular areas when being stretched. When stretched along the vessel, the dura-vessel composite can withstand even higher tensile forces compared to avascular areas. Vascular areas of the cranial dura mater seem to be similar when compared to avascular areas making their separate simulation in computational models non-essential.</description><subject>Biomechanical Phenomena</subject><subject>Biomechanical properties</subject><subject>Biophysics</subject><subject>Dura Mater</subject><subject>Humans</subject><subject>Middle meningeal artery</subject><subject>Regional variation</subject><subject>Skull</subject><subject>Tensile Strength</subject><subject>Vascularization</subject><subject>Vessel biomechanics</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1Lw0AQhhdRrFZ_gSA5ekmdzX5k96CgxS8oeNHzstlMaEI-6m5S8N-bNtWjpxmG551hHkKuKCwoUHlbLaomy5pFAgkdJ1xJeUTOqEpVDFTB8dingsaSSjoj5yFUABJAqVMyY1wKoTk7I_ePZdegW9u2dCHqimhrgxtq6yPr0e4n_Rqj9dDYNnJ-xGwd5YO3UWN79BfkpLB1wMtDnZPP56eP5Wu8en95Wz6sYseE7mMqkQmbJg44z5nmmqsCtRNUM5nJTCA4BwyytEgyrnMQnCYi1SlmgJRyxubkZtq78d3XgKE3TRkc1rVtsRuCSYRKFEgNYkTZhDrfheCxMBtfNtZ_GwpmJ85UZi_O7MSZSdyYuj4cGLIG87_Mr6kRuJsAHN_cluhNcCW2DvPSo-tN3pX_HvgBREp9lA</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Pearcy, Q.</creator><creator>Jeejo, M.</creator><creator>Scholze, M.</creator><creator>Tomlinson, J.</creator><creator>Dressler, J.</creator><creator>Zhang, M.</creator><creator>Zwirner, J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0120-2478</orcidid><orcidid>https://orcid.org/0000-0002-9509-071X</orcidid><orcidid>https://orcid.org/0000-0002-1215-8935</orcidid></search><sort><creationdate>202201</creationdate><title>Biomechanics of vascular areas of the human cranial dura mater</title><author>Pearcy, Q. ; Jeejo, M. ; Scholze, M. ; Tomlinson, J. ; Dressler, J. ; Zhang, M. ; Zwirner, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-16e35a72c044d394948fe9c51936b6b5e0cc030b7f2b49d054125797eb0e11433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomechanical Phenomena</topic><topic>Biomechanical properties</topic><topic>Biophysics</topic><topic>Dura Mater</topic><topic>Humans</topic><topic>Middle meningeal artery</topic><topic>Regional variation</topic><topic>Skull</topic><topic>Tensile Strength</topic><topic>Vascularization</topic><topic>Vessel biomechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pearcy, Q.</creatorcontrib><creatorcontrib>Jeejo, M.</creatorcontrib><creatorcontrib>Scholze, M.</creatorcontrib><creatorcontrib>Tomlinson, J.</creatorcontrib><creatorcontrib>Dressler, J.</creatorcontrib><creatorcontrib>Zhang, M.</creatorcontrib><creatorcontrib>Zwirner, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pearcy, Q.</au><au>Jeejo, M.</au><au>Scholze, M.</au><au>Tomlinson, J.</au><au>Dressler, J.</au><au>Zhang, M.</au><au>Zwirner, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanics of vascular areas of the human cranial dura mater</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2022-01</date><risdate>2022</risdate><volume>125</volume><spage>104866</spage><epage>104866</epage><pages>104866-104866</pages><artnum>104866</artnum><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Accurate biomechanical properties of the human cranial dura mater are paramount for computational head models, artificial graft developments and biomechanical basic research. Yet, it is unclear whether areas of the dura containing meningeal vessels biomechanically differ from avascular areas. Here, 244 dura mater samples with or without vessels from 32 cadavers were tested in a quasi-static uniaxial tensile testing setup. The thicknesses of the meningeal and periosteal dura in vascular and avascular areas were histologically investigated in 36 samples using van Gieson staining. The elastic modulus of 112 MPa from dura samples containing vessels running transversely was significantly lower than samples with vessels running longitudinally (151 MPa; p &lt; 0.001). The ultimate tensile strength of dura samples with transversely running vessels (11.1 MPa) was significantly lower in comparison to both avascular samples (14.9 MPa; p &lt; 0.001) and samples with a longitudinally running vessel (15.0 MPa; p &lt; 0.001). The maximum force of dura samples with longitudinally running vessels was 37 N (p &lt; 0.001), this was significantly higher compared to the other groups which were 23 N (p &lt; 0.001). The meningeal and periosteal dura layer thicknesses were not statistically different in avascular areas (p &gt; 0.222). However, around the vessels, the meningeal dura layer was significantly thicker compared to the periosteal layer (p ≤ 0.019). The sum of the meningeal and periosteal layers was similar between vascular and avascular areas (p ≥ 0.071). Vascular areas of the human cranial dura mater withstand the same forces as avascular areas when being stretched. When stretched along the vessel, the dura-vessel composite can withstand even higher tensile forces compared to avascular areas. Vascular areas of the cranial dura mater seem to be similar when compared to avascular areas making their separate simulation in computational models non-essential.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34655943</pmid><doi>10.1016/j.jmbbm.2021.104866</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0120-2478</orcidid><orcidid>https://orcid.org/0000-0002-9509-071X</orcidid><orcidid>https://orcid.org/0000-0002-1215-8935</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2022-01, Vol.125, p.104866-104866, Article 104866
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_2582806905
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biomechanical Phenomena
Biomechanical properties
Biophysics
Dura Mater
Humans
Middle meningeal artery
Regional variation
Skull
Tensile Strength
Vascularization
Vessel biomechanics
title Biomechanics of vascular areas of the human cranial dura mater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanics%20of%20vascular%20areas%20of%20the%20human%20cranial%20dura%20mater&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Pearcy,%20Q.&rft.date=2022-01&rft.volume=125&rft.spage=104866&rft.epage=104866&rft.pages=104866-104866&rft.artnum=104866&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2021.104866&rft_dat=%3Cproquest_cross%3E2582806905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582806905&rft_id=info:pmid/34655943&rft_els_id=S1751616121005038&rfr_iscdi=true