Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization
The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density funct...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-10, Vol.23 (41), p.23567-23575 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23575 |
---|---|
container_issue | 41 |
container_start_page | 23567 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 23 |
creator | Chasvin, Nilda Švenda, Petr Pronsato, Estela Diez, Alejandra Volpe, María Alicia Johánek, Viktor Pistonesi, Carolina |
description | The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density functional theory calculations indicate that the Mo–Mo distances are increased due to the presence of Pt. An experimental X-ray photoelectron spectroscopy study indicates that the chemical state of both molybdenum and carbon in Pt/β-Mo2C are very different from those in the Pt-free carbide, which is also in agreement with the DFT results, which indicate that the Pt atoms generate a redistribution of charge density in their environment. Temperature programmed reaction analysis shows that at temperatures higher than 530 K, a two-fold increase in the production of H2, CH4 and C2H6 is observed for Pt/β-Mo2C as compared to β-Mo2C, suggesting a higher catalytic activity for the Pt-containing carbide than for the pristine catalyst. Additionally, H2 production from ethanol on Pt/β-Mo2C presents a higher activation energy (0.64 eV) than that corresponding to pristine molybdenum carbide. In agreement with this experimental result, climbing image-nudged elastic band (CI-NEB) calculations indicate that the energy barrier linked to the formation of H2 from ethanol increases with the presence of platinum. It is concluded that the low Pt loading notably modifies the catalytic pattern of molybdenum carbide, rendering it a highly active catalyst for ethanol decomposition. |
doi_str_mv | 10.1039/d1cp03472c |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582805231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582805231</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-9951f9349cc1b10d6b5389b8df08c0eb117642c037c131c54098787b3a31082a3</originalsourceid><addsrcrecordid>eNpdzstOwzAQBVALgUQpbPgCS2zYpPXYsWMvUVUeUhEsYF05E6d1lcYhdsXjs_gQvonwEAtWc690dDWEnAKbABNmWgF2TOQFxz0yglyJzDCd7__lQh2Soxg3jDGQIEZktQjPWRNs5dsVvU_Tj_fsNvAZRZts8xoTrUNPXVrbNjS08jEG9Db50E7o_KVzvd-6dpDUthVNaxd6lzwOHde2t5gG8PbNj8lBbZvoTn7vmDxezh9m19ni7upmdrHIOg4qZcZIqI3IDSKUwCpVSqFNqauaaWSuBChUzpGJAkEAypwZXeiiFFYA09yKMTn_2e368LRzMS23PqJrGtu6sItLLjXXTHIBAz37Rzdh17fDd19KCaOkkuITZmtmsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586396565</pqid></control><display><type>article</type><title>Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chasvin, Nilda ; Švenda, Petr ; Pronsato, Estela ; Diez, Alejandra ; Volpe, María Alicia ; Johánek, Viktor ; Pistonesi, Carolina</creator><creatorcontrib>Chasvin, Nilda ; Švenda, Petr ; Pronsato, Estela ; Diez, Alejandra ; Volpe, María Alicia ; Johánek, Viktor ; Pistonesi, Carolina</creatorcontrib><description>The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density functional theory calculations indicate that the Mo–Mo distances are increased due to the presence of Pt. An experimental X-ray photoelectron spectroscopy study indicates that the chemical state of both molybdenum and carbon in Pt/β-Mo2C are very different from those in the Pt-free carbide, which is also in agreement with the DFT results, which indicate that the Pt atoms generate a redistribution of charge density in their environment. Temperature programmed reaction analysis shows that at temperatures higher than 530 K, a two-fold increase in the production of H2, CH4 and C2H6 is observed for Pt/β-Mo2C as compared to β-Mo2C, suggesting a higher catalytic activity for the Pt-containing carbide than for the pristine catalyst. Additionally, H2 production from ethanol on Pt/β-Mo2C presents a higher activation energy (0.64 eV) than that corresponding to pristine molybdenum carbide. In agreement with this experimental result, climbing image-nudged elastic band (CI-NEB) calculations indicate that the energy barrier linked to the formation of H2 from ethanol increases with the presence of platinum. It is concluded that the low Pt loading notably modifies the catalytic pattern of molybdenum carbide, rendering it a highly active catalyst for ethanol decomposition.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp03472c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alcohols ; Catalysts ; Catalytic activity ; Charge density ; Density functional theory ; Ethanol ; Hydrogen production ; Lattice parameters ; Mathematical analysis ; Molybdenum ; Molybdenum carbide ; Noble metals ; Parameter modification ; Photoelectrons</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-10, Vol.23 (41), p.23567-23575</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chasvin, Nilda</creatorcontrib><creatorcontrib>Švenda, Petr</creatorcontrib><creatorcontrib>Pronsato, Estela</creatorcontrib><creatorcontrib>Diez, Alejandra</creatorcontrib><creatorcontrib>Volpe, María Alicia</creatorcontrib><creatorcontrib>Johánek, Viktor</creatorcontrib><creatorcontrib>Pistonesi, Carolina</creatorcontrib><title>Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization</title><title>Physical chemistry chemical physics : PCCP</title><description>The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density functional theory calculations indicate that the Mo–Mo distances are increased due to the presence of Pt. An experimental X-ray photoelectron spectroscopy study indicates that the chemical state of both molybdenum and carbon in Pt/β-Mo2C are very different from those in the Pt-free carbide, which is also in agreement with the DFT results, which indicate that the Pt atoms generate a redistribution of charge density in their environment. Temperature programmed reaction analysis shows that at temperatures higher than 530 K, a two-fold increase in the production of H2, CH4 and C2H6 is observed for Pt/β-Mo2C as compared to β-Mo2C, suggesting a higher catalytic activity for the Pt-containing carbide than for the pristine catalyst. Additionally, H2 production from ethanol on Pt/β-Mo2C presents a higher activation energy (0.64 eV) than that corresponding to pristine molybdenum carbide. In agreement with this experimental result, climbing image-nudged elastic band (CI-NEB) calculations indicate that the energy barrier linked to the formation of H2 from ethanol increases with the presence of platinum. It is concluded that the low Pt loading notably modifies the catalytic pattern of molybdenum carbide, rendering it a highly active catalyst for ethanol decomposition.</description><subject>Alcohols</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Charge density</subject><subject>Density functional theory</subject><subject>Ethanol</subject><subject>Hydrogen production</subject><subject>Lattice parameters</subject><subject>Mathematical analysis</subject><subject>Molybdenum</subject><subject>Molybdenum carbide</subject><subject>Noble metals</subject><subject>Parameter modification</subject><subject>Photoelectrons</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdzstOwzAQBVALgUQpbPgCS2zYpPXYsWMvUVUeUhEsYF05E6d1lcYhdsXjs_gQvonwEAtWc690dDWEnAKbABNmWgF2TOQFxz0yglyJzDCd7__lQh2Soxg3jDGQIEZktQjPWRNs5dsVvU_Tj_fsNvAZRZts8xoTrUNPXVrbNjS08jEG9Db50E7o_KVzvd-6dpDUthVNaxd6lzwOHde2t5gG8PbNj8lBbZvoTn7vmDxezh9m19ni7upmdrHIOg4qZcZIqI3IDSKUwCpVSqFNqauaaWSuBChUzpGJAkEAypwZXeiiFFYA09yKMTn_2e368LRzMS23PqJrGtu6sItLLjXXTHIBAz37Rzdh17fDd19KCaOkkuITZmtmsQ</recordid><startdate>20211027</startdate><enddate>20211027</enddate><creator>Chasvin, Nilda</creator><creator>Švenda, Petr</creator><creator>Pronsato, Estela</creator><creator>Diez, Alejandra</creator><creator>Volpe, María Alicia</creator><creator>Johánek, Viktor</creator><creator>Pistonesi, Carolina</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20211027</creationdate><title>Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization</title><author>Chasvin, Nilda ; Švenda, Petr ; Pronsato, Estela ; Diez, Alejandra ; Volpe, María Alicia ; Johánek, Viktor ; Pistonesi, Carolina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-9951f9349cc1b10d6b5389b8df08c0eb117642c037c131c54098787b3a31082a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alcohols</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Charge density</topic><topic>Density functional theory</topic><topic>Ethanol</topic><topic>Hydrogen production</topic><topic>Lattice parameters</topic><topic>Mathematical analysis</topic><topic>Molybdenum</topic><topic>Molybdenum carbide</topic><topic>Noble metals</topic><topic>Parameter modification</topic><topic>Photoelectrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chasvin, Nilda</creatorcontrib><creatorcontrib>Švenda, Petr</creatorcontrib><creatorcontrib>Pronsato, Estela</creatorcontrib><creatorcontrib>Diez, Alejandra</creatorcontrib><creatorcontrib>Volpe, María Alicia</creatorcontrib><creatorcontrib>Johánek, Viktor</creatorcontrib><creatorcontrib>Pistonesi, Carolina</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chasvin, Nilda</au><au>Švenda, Petr</au><au>Pronsato, Estela</au><au>Diez, Alejandra</au><au>Volpe, María Alicia</au><au>Johánek, Viktor</au><au>Pistonesi, Carolina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-10-27</date><risdate>2021</risdate><volume>23</volume><issue>41</issue><spage>23567</spage><epage>23575</epage><pages>23567-23575</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density functional theory calculations indicate that the Mo–Mo distances are increased due to the presence of Pt. An experimental X-ray photoelectron spectroscopy study indicates that the chemical state of both molybdenum and carbon in Pt/β-Mo2C are very different from those in the Pt-free carbide, which is also in agreement with the DFT results, which indicate that the Pt atoms generate a redistribution of charge density in their environment. Temperature programmed reaction analysis shows that at temperatures higher than 530 K, a two-fold increase in the production of H2, CH4 and C2H6 is observed for Pt/β-Mo2C as compared to β-Mo2C, suggesting a higher catalytic activity for the Pt-containing carbide than for the pristine catalyst. Additionally, H2 production from ethanol on Pt/β-Mo2C presents a higher activation energy (0.64 eV) than that corresponding to pristine molybdenum carbide. In agreement with this experimental result, climbing image-nudged elastic band (CI-NEB) calculations indicate that the energy barrier linked to the formation of H2 from ethanol increases with the presence of platinum. It is concluded that the low Pt loading notably modifies the catalytic pattern of molybdenum carbide, rendering it a highly active catalyst for ethanol decomposition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp03472c</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2021-10, Vol.23 (41), p.23567-23575 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2582805231 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Alcohols Catalysts Catalytic activity Charge density Density functional theory Ethanol Hydrogen production Lattice parameters Mathematical analysis Molybdenum Molybdenum carbide Noble metals Parameter modification Photoelectrons |
title | Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-loading%20Pt/%CE%B2-Mo2C%20catalyst%20for%20ethanol%20dissociation.%20Experimental%20and%20theoretical%20characterization&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Chasvin,%20Nilda&rft.date=2021-10-27&rft.volume=23&rft.issue=41&rft.spage=23567&rft.epage=23575&rft.pages=23567-23575&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp03472c&rft_dat=%3Cproquest%3E2582805231%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586396565&rft_id=info:pmid/&rfr_iscdi=true |