Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization

The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-10, Vol.23 (41), p.23567-23575
Hauptverfasser: Chasvin, Nilda, Švenda, Petr, Pronsato, Estela, Diez, Alejandra, Volpe, María Alicia, Johánek, Viktor, Pistonesi, Carolina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23575
container_issue 41
container_start_page 23567
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Chasvin, Nilda
Švenda, Petr
Pronsato, Estela
Diez, Alejandra
Volpe, María Alicia
Johánek, Viktor
Pistonesi, Carolina
description The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density functional theory calculations indicate that the Mo–Mo distances are increased due to the presence of Pt. An experimental X-ray photoelectron spectroscopy study indicates that the chemical state of both molybdenum and carbon in Pt/β-Mo2C are very different from those in the Pt-free carbide, which is also in agreement with the DFT results, which indicate that the Pt atoms generate a redistribution of charge density in their environment. Temperature programmed reaction analysis shows that at temperatures higher than 530 K, a two-fold increase in the production of H2, CH4 and C2H6 is observed for Pt/β-Mo2C as compared to β-Mo2C, suggesting a higher catalytic activity for the Pt-containing carbide than for the pristine catalyst. Additionally, H2 production from ethanol on Pt/β-Mo2C presents a higher activation energy (0.64 eV) than that corresponding to pristine molybdenum carbide. In agreement with this experimental result, climbing image-nudged elastic band (CI-NEB) calculations indicate that the energy barrier linked to the formation of H2 from ethanol increases with the presence of platinum. It is concluded that the low Pt loading notably modifies the catalytic pattern of molybdenum carbide, rendering it a highly active catalyst for ethanol decomposition.
doi_str_mv 10.1039/d1cp03472c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582805231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582805231</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-9951f9349cc1b10d6b5389b8df08c0eb117642c037c131c54098787b3a31082a3</originalsourceid><addsrcrecordid>eNpdzstOwzAQBVALgUQpbPgCS2zYpPXYsWMvUVUeUhEsYF05E6d1lcYhdsXjs_gQvonwEAtWc690dDWEnAKbABNmWgF2TOQFxz0yglyJzDCd7__lQh2Soxg3jDGQIEZktQjPWRNs5dsVvU_Tj_fsNvAZRZts8xoTrUNPXVrbNjS08jEG9Db50E7o_KVzvd-6dpDUthVNaxd6lzwOHde2t5gG8PbNj8lBbZvoTn7vmDxezh9m19ni7upmdrHIOg4qZcZIqI3IDSKUwCpVSqFNqauaaWSuBChUzpGJAkEAypwZXeiiFFYA09yKMTn_2e368LRzMS23PqJrGtu6sItLLjXXTHIBAz37Rzdh17fDd19KCaOkkuITZmtmsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586396565</pqid></control><display><type>article</type><title>Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chasvin, Nilda ; Švenda, Petr ; Pronsato, Estela ; Diez, Alejandra ; Volpe, María Alicia ; Johánek, Viktor ; Pistonesi, Carolina</creator><creatorcontrib>Chasvin, Nilda ; Švenda, Petr ; Pronsato, Estela ; Diez, Alejandra ; Volpe, María Alicia ; Johánek, Viktor ; Pistonesi, Carolina</creatorcontrib><description>The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density functional theory calculations indicate that the Mo–Mo distances are increased due to the presence of Pt. An experimental X-ray photoelectron spectroscopy study indicates that the chemical state of both molybdenum and carbon in Pt/β-Mo2C are very different from those in the Pt-free carbide, which is also in agreement with the DFT results, which indicate that the Pt atoms generate a redistribution of charge density in their environment. Temperature programmed reaction analysis shows that at temperatures higher than 530 K, a two-fold increase in the production of H2, CH4 and C2H6 is observed for Pt/β-Mo2C as compared to β-Mo2C, suggesting a higher catalytic activity for the Pt-containing carbide than for the pristine catalyst. Additionally, H2 production from ethanol on Pt/β-Mo2C presents a higher activation energy (0.64 eV) than that corresponding to pristine molybdenum carbide. In agreement with this experimental result, climbing image-nudged elastic band (CI-NEB) calculations indicate that the energy barrier linked to the formation of H2 from ethanol increases with the presence of platinum. It is concluded that the low Pt loading notably modifies the catalytic pattern of molybdenum carbide, rendering it a highly active catalyst for ethanol decomposition.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp03472c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alcohols ; Catalysts ; Catalytic activity ; Charge density ; Density functional theory ; Ethanol ; Hydrogen production ; Lattice parameters ; Mathematical analysis ; Molybdenum ; Molybdenum carbide ; Noble metals ; Parameter modification ; Photoelectrons</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-10, Vol.23 (41), p.23567-23575</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chasvin, Nilda</creatorcontrib><creatorcontrib>Švenda, Petr</creatorcontrib><creatorcontrib>Pronsato, Estela</creatorcontrib><creatorcontrib>Diez, Alejandra</creatorcontrib><creatorcontrib>Volpe, María Alicia</creatorcontrib><creatorcontrib>Johánek, Viktor</creatorcontrib><creatorcontrib>Pistonesi, Carolina</creatorcontrib><title>Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization</title><title>Physical chemistry chemical physics : PCCP</title><description>The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density functional theory calculations indicate that the Mo–Mo distances are increased due to the presence of Pt. An experimental X-ray photoelectron spectroscopy study indicates that the chemical state of both molybdenum and carbon in Pt/β-Mo2C are very different from those in the Pt-free carbide, which is also in agreement with the DFT results, which indicate that the Pt atoms generate a redistribution of charge density in their environment. Temperature programmed reaction analysis shows that at temperatures higher than 530 K, a two-fold increase in the production of H2, CH4 and C2H6 is observed for Pt/β-Mo2C as compared to β-Mo2C, suggesting a higher catalytic activity for the Pt-containing carbide than for the pristine catalyst. Additionally, H2 production from ethanol on Pt/β-Mo2C presents a higher activation energy (0.64 eV) than that corresponding to pristine molybdenum carbide. In agreement with this experimental result, climbing image-nudged elastic band (CI-NEB) calculations indicate that the energy barrier linked to the formation of H2 from ethanol increases with the presence of platinum. It is concluded that the low Pt loading notably modifies the catalytic pattern of molybdenum carbide, rendering it a highly active catalyst for ethanol decomposition.</description><subject>Alcohols</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Charge density</subject><subject>Density functional theory</subject><subject>Ethanol</subject><subject>Hydrogen production</subject><subject>Lattice parameters</subject><subject>Mathematical analysis</subject><subject>Molybdenum</subject><subject>Molybdenum carbide</subject><subject>Noble metals</subject><subject>Parameter modification</subject><subject>Photoelectrons</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdzstOwzAQBVALgUQpbPgCS2zYpPXYsWMvUVUeUhEsYF05E6d1lcYhdsXjs_gQvonwEAtWc690dDWEnAKbABNmWgF2TOQFxz0yglyJzDCd7__lQh2Soxg3jDGQIEZktQjPWRNs5dsVvU_Tj_fsNvAZRZts8xoTrUNPXVrbNjS08jEG9Db50E7o_KVzvd-6dpDUthVNaxd6lzwOHde2t5gG8PbNj8lBbZvoTn7vmDxezh9m19ni7upmdrHIOg4qZcZIqI3IDSKUwCpVSqFNqauaaWSuBChUzpGJAkEAypwZXeiiFFYA09yKMTn_2e368LRzMS23PqJrGtu6sItLLjXXTHIBAz37Rzdh17fDd19KCaOkkuITZmtmsQ</recordid><startdate>20211027</startdate><enddate>20211027</enddate><creator>Chasvin, Nilda</creator><creator>Švenda, Petr</creator><creator>Pronsato, Estela</creator><creator>Diez, Alejandra</creator><creator>Volpe, María Alicia</creator><creator>Johánek, Viktor</creator><creator>Pistonesi, Carolina</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20211027</creationdate><title>Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization</title><author>Chasvin, Nilda ; Švenda, Petr ; Pronsato, Estela ; Diez, Alejandra ; Volpe, María Alicia ; Johánek, Viktor ; Pistonesi, Carolina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-9951f9349cc1b10d6b5389b8df08c0eb117642c037c131c54098787b3a31082a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alcohols</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Charge density</topic><topic>Density functional theory</topic><topic>Ethanol</topic><topic>Hydrogen production</topic><topic>Lattice parameters</topic><topic>Mathematical analysis</topic><topic>Molybdenum</topic><topic>Molybdenum carbide</topic><topic>Noble metals</topic><topic>Parameter modification</topic><topic>Photoelectrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chasvin, Nilda</creatorcontrib><creatorcontrib>Švenda, Petr</creatorcontrib><creatorcontrib>Pronsato, Estela</creatorcontrib><creatorcontrib>Diez, Alejandra</creatorcontrib><creatorcontrib>Volpe, María Alicia</creatorcontrib><creatorcontrib>Johánek, Viktor</creatorcontrib><creatorcontrib>Pistonesi, Carolina</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chasvin, Nilda</au><au>Švenda, Petr</au><au>Pronsato, Estela</au><au>Diez, Alejandra</au><au>Volpe, María Alicia</au><au>Johánek, Viktor</au><au>Pistonesi, Carolina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-10-27</date><risdate>2021</risdate><volume>23</volume><issue>41</issue><spage>23567</spage><epage>23575</epage><pages>23567-23575</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The adsorption and dissociation of ethanol on Pt/β-Mo2C with a low noble metal loading (0.1 wt%) is studied in the context of catalytic H2 production from alcohols. X-ray diffraction and experimental results indicate that Pt modifies the lattice parameters of β-Mo2C. In line with this, density functional theory calculations indicate that the Mo–Mo distances are increased due to the presence of Pt. An experimental X-ray photoelectron spectroscopy study indicates that the chemical state of both molybdenum and carbon in Pt/β-Mo2C are very different from those in the Pt-free carbide, which is also in agreement with the DFT results, which indicate that the Pt atoms generate a redistribution of charge density in their environment. Temperature programmed reaction analysis shows that at temperatures higher than 530 K, a two-fold increase in the production of H2, CH4 and C2H6 is observed for Pt/β-Mo2C as compared to β-Mo2C, suggesting a higher catalytic activity for the Pt-containing carbide than for the pristine catalyst. Additionally, H2 production from ethanol on Pt/β-Mo2C presents a higher activation energy (0.64 eV) than that corresponding to pristine molybdenum carbide. In agreement with this experimental result, climbing image-nudged elastic band (CI-NEB) calculations indicate that the energy barrier linked to the formation of H2 from ethanol increases with the presence of platinum. It is concluded that the low Pt loading notably modifies the catalytic pattern of molybdenum carbide, rendering it a highly active catalyst for ethanol decomposition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp03472c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-10, Vol.23 (41), p.23567-23575
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2582805231
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alcohols
Catalysts
Catalytic activity
Charge density
Density functional theory
Ethanol
Hydrogen production
Lattice parameters
Mathematical analysis
Molybdenum
Molybdenum carbide
Noble metals
Parameter modification
Photoelectrons
title Low-loading Pt/β-Mo2C catalyst for ethanol dissociation. Experimental and theoretical characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-loading%20Pt/%CE%B2-Mo2C%20catalyst%20for%20ethanol%20dissociation.%20Experimental%20and%20theoretical%20characterization&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Chasvin,%20Nilda&rft.date=2021-10-27&rft.volume=23&rft.issue=41&rft.spage=23567&rft.epage=23575&rft.pages=23567-23575&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp03472c&rft_dat=%3Cproquest%3E2582805231%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586396565&rft_id=info:pmid/&rfr_iscdi=true