Forms of explanation and understanding for neuroscience and artificial intelligence
Much of the controversy evoked by the use of deep neural networks as models of biological neural systems amount to debates over what constitutes scientific progress in neuroscience. To discuss what constitutes scientific progress, one must have a goal in mind (progress toward what?). One such long-t...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2021-12, Vol.126 (6), p.1860-1874 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1874 |
---|---|
container_issue | 6 |
container_start_page | 1860 |
container_title | Journal of neurophysiology |
container_volume | 126 |
creator | Thompson, Jessica A F |
description | Much of the controversy evoked by the use of deep neural networks as models of biological neural systems amount to debates over what constitutes scientific progress in neuroscience. To discuss what constitutes scientific progress, one must have a goal in mind (progress toward what?). One such long-term goal is to produce scientific explanations of intelligent capacities (e.g., object recognition, relational reasoning). I argue that the most pressing philosophical questions at the intersection of neuroscience and artificial intelligence are ultimately concerned with defining the phenomena to be explained and with what constitute valid explanations of such phenomena. I propose that a foundation in the philosophy of scientific explanation and understanding can scaffold future discussions about how an integrated science of intelligence might progress. Toward this vision, I review relevant theories of scientific explanation and discuss strategies for unifying the scientific goals of neuroscience and AI. |
doi_str_mv | 10.1152/jn.00195.2021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582114388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582114388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-4e9475d1e0a57ee4b74a9747430b943c435a6b29cb52b4ba6c1bef0c496e92233</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqEwsqKMLCn-jOMRVRSQKjEAs2U7l8pV4hQ7keDfk37AdK_uHp3uHoRuCV4QIujDNiwwJkosKKbkDGVTjxZEqOocZRhPmWEpZ-gqpS3GWApML9GM8ZJzQqsMva_62KW8b3L43rUmmMH3ITehzsdQQ0zDFH3Y5E0f8wBj7JPzEBwcEBMH33jnTZv7MEDb-s1-do0uGtMmuDnVOfpcPX0sX4r12_Pr8nFdOMboUHBQXIqaADZCAnAruVGSS86wVZw5zoQpLVXOCmq5NaUjFhrsuCpBUcrYHN0f9-5i_zVCGnTnk5vOMAH6MWkqKkoIZ1U1ocURddMHKUKjd9F3Jv5ogvXeo94GffCo9x4n_u60erQd1P_0nzj2C5m6bk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582114388</pqid></control><display><type>article</type><title>Forms of explanation and understanding for neuroscience and artificial intelligence</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Thompson, Jessica A F</creator><creatorcontrib>Thompson, Jessica A F</creatorcontrib><description>Much of the controversy evoked by the use of deep neural networks as models of biological neural systems amount to debates over what constitutes scientific progress in neuroscience. To discuss what constitutes scientific progress, one must have a goal in mind (progress toward what?). One such long-term goal is to produce scientific explanations of intelligent capacities (e.g., object recognition, relational reasoning). I argue that the most pressing philosophical questions at the intersection of neuroscience and artificial intelligence are ultimately concerned with defining the phenomena to be explained and with what constitute valid explanations of such phenomena. I propose that a foundation in the philosophy of scientific explanation and understanding can scaffold future discussions about how an integrated science of intelligence might progress. Toward this vision, I review relevant theories of scientific explanation and discuss strategies for unifying the scientific goals of neuroscience and AI.</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00195.2021</identifier><identifier>PMID: 34644128</identifier><language>eng</language><publisher>United States</publisher><subject>Artificial Intelligence ; Deep Learning ; Humans ; Neurosciences</subject><ispartof>Journal of neurophysiology, 2021-12, Vol.126 (6), p.1860-1874</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-4e9475d1e0a57ee4b74a9747430b943c435a6b29cb52b4ba6c1bef0c496e92233</citedby><cites>FETCH-LOGICAL-c332t-4e9475d1e0a57ee4b74a9747430b943c435a6b29cb52b4ba6c1bef0c496e92233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34644128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Jessica A F</creatorcontrib><title>Forms of explanation and understanding for neuroscience and artificial intelligence</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>Much of the controversy evoked by the use of deep neural networks as models of biological neural systems amount to debates over what constitutes scientific progress in neuroscience. To discuss what constitutes scientific progress, one must have a goal in mind (progress toward what?). One such long-term goal is to produce scientific explanations of intelligent capacities (e.g., object recognition, relational reasoning). I argue that the most pressing philosophical questions at the intersection of neuroscience and artificial intelligence are ultimately concerned with defining the phenomena to be explained and with what constitute valid explanations of such phenomena. I propose that a foundation in the philosophy of scientific explanation and understanding can scaffold future discussions about how an integrated science of intelligence might progress. Toward this vision, I review relevant theories of scientific explanation and discuss strategies for unifying the scientific goals of neuroscience and AI.</description><subject>Artificial Intelligence</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Neurosciences</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kD1PwzAQhi0EoqEwsqKMLCn-jOMRVRSQKjEAs2U7l8pV4hQ7keDfk37AdK_uHp3uHoRuCV4QIujDNiwwJkosKKbkDGVTjxZEqOocZRhPmWEpZ-gqpS3GWApML9GM8ZJzQqsMva_62KW8b3L43rUmmMH3ITehzsdQQ0zDFH3Y5E0f8wBj7JPzEBwcEBMH33jnTZv7MEDb-s1-do0uGtMmuDnVOfpcPX0sX4r12_Pr8nFdOMboUHBQXIqaADZCAnAruVGSS86wVZw5zoQpLVXOCmq5NaUjFhrsuCpBUcrYHN0f9-5i_zVCGnTnk5vOMAH6MWkqKkoIZ1U1ocURddMHKUKjd9F3Jv5ogvXeo94GffCo9x4n_u60erQd1P_0nzj2C5m6bk0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Thompson, Jessica A F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20211201</creationdate><title>Forms of explanation and understanding for neuroscience and artificial intelligence</title><author>Thompson, Jessica A F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-4e9475d1e0a57ee4b74a9747430b943c435a6b29cb52b4ba6c1bef0c496e92233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Neurosciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Jessica A F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Jessica A F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forms of explanation and understanding for neuroscience and artificial intelligence</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>126</volume><issue>6</issue><spage>1860</spage><epage>1874</epage><pages>1860-1874</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>Much of the controversy evoked by the use of deep neural networks as models of biological neural systems amount to debates over what constitutes scientific progress in neuroscience. To discuss what constitutes scientific progress, one must have a goal in mind (progress toward what?). One such long-term goal is to produce scientific explanations of intelligent capacities (e.g., object recognition, relational reasoning). I argue that the most pressing philosophical questions at the intersection of neuroscience and artificial intelligence are ultimately concerned with defining the phenomena to be explained and with what constitute valid explanations of such phenomena. I propose that a foundation in the philosophy of scientific explanation and understanding can scaffold future discussions about how an integrated science of intelligence might progress. Toward this vision, I review relevant theories of scientific explanation and discuss strategies for unifying the scientific goals of neuroscience and AI.</abstract><cop>United States</cop><pmid>34644128</pmid><doi>10.1152/jn.00195.2021</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3077 |
ispartof | Journal of neurophysiology, 2021-12, Vol.126 (6), p.1860-1874 |
issn | 0022-3077 1522-1598 |
language | eng |
recordid | cdi_proquest_miscellaneous_2582114388 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Artificial Intelligence Deep Learning Humans Neurosciences |
title | Forms of explanation and understanding for neuroscience and artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forms%20of%20explanation%20and%20understanding%20for%20neuroscience%20and%20artificial%20intelligence&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Thompson,%20Jessica%20A%20F&rft.date=2021-12-01&rft.volume=126&rft.issue=6&rft.spage=1860&rft.epage=1874&rft.pages=1860-1874&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00195.2021&rft_dat=%3Cproquest_cross%3E2582114388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582114388&rft_id=info:pmid/34644128&rfr_iscdi=true |