Over 21% Efficiency Stable 2D Perovskite Solar Cells

Owing to their insufficient light absorption and charge transport, 2D Ruddlesden–Popper (RP) perovskites show relatively low efficiency. In this work, methylammonium (MA), formamidinum (FA), and FA/MA mixed 2D perovskite solar cells (PSCs) are fabricated. Incorporating FA cations extends the absorpt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-01, Vol.34 (1), p.e2107211-n/a
Hauptverfasser: Shao, Ming, Bie, Tong, Yang, Lvpeng, Gao, Yerun, Jin, Xing, He, Feng, Zheng, Nan, Yu, Yu, Zhang, Xinliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2107211
container_title Advanced materials (Weinheim)
container_volume 34
creator Shao, Ming
Bie, Tong
Yang, Lvpeng
Gao, Yerun
Jin, Xing
He, Feng
Zheng, Nan
Yu, Yu
Zhang, Xinliang
description Owing to their insufficient light absorption and charge transport, 2D Ruddlesden–Popper (RP) perovskites show relatively low efficiency. In this work, methylammonium (MA), formamidinum (FA), and FA/MA mixed 2D perovskite solar cells (PSCs) are fabricated. Incorporating FA cations extends the absorption range and enhances the light absorption. Optical spectroscopy shows that FA cations substantially increase the portion of 3D‐like phase to 2D phases, and X‐ray diffraction (XRD) studies reveal that FA‐based 2D perovskite possesses an oblique crystal orientation. Nevertheless, the ultrafast interphase charge transfer results in an extremely long carrier‐diffusion length (≈1.98 µm). Also, chloride additives effectively suppress the yellow δ‐phase formation of pure FA‐based 2D PSCs. As a result, both FA/MA mixed and pure FA‐based 2D PSCs exhibit a greatly enhanced power conversion efficiency (PCE) over 20%. Specifically, the pure FA‐based 2D PSCs achieve a record PCE of 21.07% (certified at 20%), which is the highest efficiency for low‐dimensional PSCs (n ≤ 10) reported to date. Importantly, the FA‐based 2D PSCs retain 97% of their initial efficiency at 85 °C persistent heating after 1500 h. The results unambiguously demonstrate that pure‐FA‐based 2D PSCs are promising for achieving comparable efficiency to 3D perovskites, along with a better device stability. Pure formamidinum (FA)‐based 2D perovskite solar cells (PSCs) achieve a record power conversion efficiency (PCE) of 21.07% (certified over 20%), the highest efficiency for low‐dimensional PSCs (n ≤ 10) reported to date, together with the improved device stability. The high‐efficiency device exhibits a narrowed bandgap and unique 2D–3D intermixing phase distribution for improved light absorption and superior charge transport.
doi_str_mv 10.1002/adma.202107211
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2582112612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617231270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-f8ddc2e1fb7f579da8f716663dc722013fb070d5cd170afd36753ea2aab7c36f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlavHmVBBC9bJ5Nu0j2Wtn5ApUL1HLL5gK3bribdSv-9Ka0VvHgamHnmYeYl5JJClwLgnTIL1UVACgIpPSJtmiFNe5Bnx6QNOcvSnPf6LXIWwhwAcg78lLRYLzYRRJv0pmvrE6Q3ydi5Upd2qTfJbKWKyiY4Sl6sr9fhvVzZZFZXyidDW1XhnJw4VQV7sa8d8nY_fh0-ppPpw9NwMEk1E4ymrm-MRktdIVwmcqP6TlDOOTNaIAJlrgABJtOGClDOMC4yZhUqVQjNuGMdcrvzfvj6s7FhJRdl0PECtbR1EyRm_fg0cooRvf6DzuvGL-N1Ms4FMooCItXdUdrXIXjr5IcvF8pvJAW5zVNu85SHPOPC1V7bFAtrDvhPgBHId8BXWdnNPzo5GD0PfuXfDp1-RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617231270</pqid></control><display><type>article</type><title>Over 21% Efficiency Stable 2D Perovskite Solar Cells</title><source>Wiley Online Library All Journals</source><creator>Shao, Ming ; Bie, Tong ; Yang, Lvpeng ; Gao, Yerun ; Jin, Xing ; He, Feng ; Zheng, Nan ; Yu, Yu ; Zhang, Xinliang</creator><creatorcontrib>Shao, Ming ; Bie, Tong ; Yang, Lvpeng ; Gao, Yerun ; Jin, Xing ; He, Feng ; Zheng, Nan ; Yu, Yu ; Zhang, Xinliang</creatorcontrib><description>Owing to their insufficient light absorption and charge transport, 2D Ruddlesden–Popper (RP) perovskites show relatively low efficiency. In this work, methylammonium (MA), formamidinum (FA), and FA/MA mixed 2D perovskite solar cells (PSCs) are fabricated. Incorporating FA cations extends the absorption range and enhances the light absorption. Optical spectroscopy shows that FA cations substantially increase the portion of 3D‐like phase to 2D phases, and X‐ray diffraction (XRD) studies reveal that FA‐based 2D perovskite possesses an oblique crystal orientation. Nevertheless, the ultrafast interphase charge transfer results in an extremely long carrier‐diffusion length (≈1.98 µm). Also, chloride additives effectively suppress the yellow δ‐phase formation of pure FA‐based 2D PSCs. As a result, both FA/MA mixed and pure FA‐based 2D PSCs exhibit a greatly enhanced power conversion efficiency (PCE) over 20%. Specifically, the pure FA‐based 2D PSCs achieve a record PCE of 21.07% (certified at 20%), which is the highest efficiency for low‐dimensional PSCs (n ≤ 10) reported to date. Importantly, the FA‐based 2D PSCs retain 97% of their initial efficiency at 85 °C persistent heating after 1500 h. The results unambiguously demonstrate that pure‐FA‐based 2D PSCs are promising for achieving comparable efficiency to 3D perovskites, along with a better device stability. Pure formamidinum (FA)‐based 2D perovskite solar cells (PSCs) achieve a record power conversion efficiency (PCE) of 21.07% (certified over 20%), the highest efficiency for low‐dimensional PSCs (n ≤ 10) reported to date, together with the improved device stability. The high‐efficiency device exhibits a narrowed bandgap and unique 2D–3D intermixing phase distribution for improved light absorption and superior charge transport.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202107211</identifier><identifier>PMID: 34648207</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Additives ; Cations ; Charge transfer ; Charge transport ; Crystal structure ; Diffusion length ; Efficiency ; Electromagnetic absorption ; Energy conversion efficiency ; Extreme values ; interphase charge transfer ; low‐dimensional materials ; perovskite solar cells ; Perovskites ; phase distribution ; Photovoltaic cells ; Ruddlesden–Popper perovskites ; Solar cells</subject><ispartof>Advanced materials (Weinheim), 2022-01, Vol.34 (1), p.e2107211-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-f8ddc2e1fb7f579da8f716663dc722013fb070d5cd170afd36753ea2aab7c36f3</citedby><cites>FETCH-LOGICAL-c3731-f8ddc2e1fb7f579da8f716663dc722013fb070d5cd170afd36753ea2aab7c36f3</cites><orcidid>0000-0003-3709-7785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202107211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202107211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34648207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Ming</creatorcontrib><creatorcontrib>Bie, Tong</creatorcontrib><creatorcontrib>Yang, Lvpeng</creatorcontrib><creatorcontrib>Gao, Yerun</creatorcontrib><creatorcontrib>Jin, Xing</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Zheng, Nan</creatorcontrib><creatorcontrib>Yu, Yu</creatorcontrib><creatorcontrib>Zhang, Xinliang</creatorcontrib><title>Over 21% Efficiency Stable 2D Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Owing to their insufficient light absorption and charge transport, 2D Ruddlesden–Popper (RP) perovskites show relatively low efficiency. In this work, methylammonium (MA), formamidinum (FA), and FA/MA mixed 2D perovskite solar cells (PSCs) are fabricated. Incorporating FA cations extends the absorption range and enhances the light absorption. Optical spectroscopy shows that FA cations substantially increase the portion of 3D‐like phase to 2D phases, and X‐ray diffraction (XRD) studies reveal that FA‐based 2D perovskite possesses an oblique crystal orientation. Nevertheless, the ultrafast interphase charge transfer results in an extremely long carrier‐diffusion length (≈1.98 µm). Also, chloride additives effectively suppress the yellow δ‐phase formation of pure FA‐based 2D PSCs. As a result, both FA/MA mixed and pure FA‐based 2D PSCs exhibit a greatly enhanced power conversion efficiency (PCE) over 20%. Specifically, the pure FA‐based 2D PSCs achieve a record PCE of 21.07% (certified at 20%), which is the highest efficiency for low‐dimensional PSCs (n ≤ 10) reported to date. Importantly, the FA‐based 2D PSCs retain 97% of their initial efficiency at 85 °C persistent heating after 1500 h. The results unambiguously demonstrate that pure‐FA‐based 2D PSCs are promising for achieving comparable efficiency to 3D perovskites, along with a better device stability. Pure formamidinum (FA)‐based 2D perovskite solar cells (PSCs) achieve a record power conversion efficiency (PCE) of 21.07% (certified over 20%), the highest efficiency for low‐dimensional PSCs (n ≤ 10) reported to date, together with the improved device stability. The high‐efficiency device exhibits a narrowed bandgap and unique 2D–3D intermixing phase distribution for improved light absorption and superior charge transport.</description><subject>Additives</subject><subject>Cations</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Crystal structure</subject><subject>Diffusion length</subject><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Energy conversion efficiency</subject><subject>Extreme values</subject><subject>interphase charge transfer</subject><subject>low‐dimensional materials</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>phase distribution</subject><subject>Photovoltaic cells</subject><subject>Ruddlesden–Popper perovskites</subject><subject>Solar cells</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlavHmVBBC9bJ5Nu0j2Wtn5ApUL1HLL5gK3bribdSv-9Ka0VvHgamHnmYeYl5JJClwLgnTIL1UVACgIpPSJtmiFNe5Bnx6QNOcvSnPf6LXIWwhwAcg78lLRYLzYRRJv0pmvrE6Q3ydi5Upd2qTfJbKWKyiY4Sl6sr9fhvVzZZFZXyidDW1XhnJw4VQV7sa8d8nY_fh0-ppPpw9NwMEk1E4ymrm-MRktdIVwmcqP6TlDOOTNaIAJlrgABJtOGClDOMC4yZhUqVQjNuGMdcrvzfvj6s7FhJRdl0PECtbR1EyRm_fg0cooRvf6DzuvGL-N1Ms4FMooCItXdUdrXIXjr5IcvF8pvJAW5zVNu85SHPOPC1V7bFAtrDvhPgBHId8BXWdnNPzo5GD0PfuXfDp1-RA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Shao, Ming</creator><creator>Bie, Tong</creator><creator>Yang, Lvpeng</creator><creator>Gao, Yerun</creator><creator>Jin, Xing</creator><creator>He, Feng</creator><creator>Zheng, Nan</creator><creator>Yu, Yu</creator><creator>Zhang, Xinliang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3709-7785</orcidid></search><sort><creationdate>20220101</creationdate><title>Over 21% Efficiency Stable 2D Perovskite Solar Cells</title><author>Shao, Ming ; Bie, Tong ; Yang, Lvpeng ; Gao, Yerun ; Jin, Xing ; He, Feng ; Zheng, Nan ; Yu, Yu ; Zhang, Xinliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-f8ddc2e1fb7f579da8f716663dc722013fb070d5cd170afd36753ea2aab7c36f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Cations</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Crystal structure</topic><topic>Diffusion length</topic><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Energy conversion efficiency</topic><topic>Extreme values</topic><topic>interphase charge transfer</topic><topic>low‐dimensional materials</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>phase distribution</topic><topic>Photovoltaic cells</topic><topic>Ruddlesden–Popper perovskites</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Ming</creatorcontrib><creatorcontrib>Bie, Tong</creatorcontrib><creatorcontrib>Yang, Lvpeng</creatorcontrib><creatorcontrib>Gao, Yerun</creatorcontrib><creatorcontrib>Jin, Xing</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Zheng, Nan</creatorcontrib><creatorcontrib>Yu, Yu</creatorcontrib><creatorcontrib>Zhang, Xinliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Ming</au><au>Bie, Tong</au><au>Yang, Lvpeng</au><au>Gao, Yerun</au><au>Jin, Xing</au><au>He, Feng</au><au>Zheng, Nan</au><au>Yu, Yu</au><au>Zhang, Xinliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Over 21% Efficiency Stable 2D Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><spage>e2107211</spage><epage>n/a</epage><pages>e2107211-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Owing to their insufficient light absorption and charge transport, 2D Ruddlesden–Popper (RP) perovskites show relatively low efficiency. In this work, methylammonium (MA), formamidinum (FA), and FA/MA mixed 2D perovskite solar cells (PSCs) are fabricated. Incorporating FA cations extends the absorption range and enhances the light absorption. Optical spectroscopy shows that FA cations substantially increase the portion of 3D‐like phase to 2D phases, and X‐ray diffraction (XRD) studies reveal that FA‐based 2D perovskite possesses an oblique crystal orientation. Nevertheless, the ultrafast interphase charge transfer results in an extremely long carrier‐diffusion length (≈1.98 µm). Also, chloride additives effectively suppress the yellow δ‐phase formation of pure FA‐based 2D PSCs. As a result, both FA/MA mixed and pure FA‐based 2D PSCs exhibit a greatly enhanced power conversion efficiency (PCE) over 20%. Specifically, the pure FA‐based 2D PSCs achieve a record PCE of 21.07% (certified at 20%), which is the highest efficiency for low‐dimensional PSCs (n ≤ 10) reported to date. Importantly, the FA‐based 2D PSCs retain 97% of their initial efficiency at 85 °C persistent heating after 1500 h. The results unambiguously demonstrate that pure‐FA‐based 2D PSCs are promising for achieving comparable efficiency to 3D perovskites, along with a better device stability. Pure formamidinum (FA)‐based 2D perovskite solar cells (PSCs) achieve a record power conversion efficiency (PCE) of 21.07% (certified over 20%), the highest efficiency for low‐dimensional PSCs (n ≤ 10) reported to date, together with the improved device stability. The high‐efficiency device exhibits a narrowed bandgap and unique 2D–3D intermixing phase distribution for improved light absorption and superior charge transport.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34648207</pmid><doi>10.1002/adma.202107211</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3709-7785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-01, Vol.34 (1), p.e2107211-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2582112612
source Wiley Online Library All Journals
subjects Additives
Cations
Charge transfer
Charge transport
Crystal structure
Diffusion length
Efficiency
Electromagnetic absorption
Energy conversion efficiency
Extreme values
interphase charge transfer
low‐dimensional materials
perovskite solar cells
Perovskites
phase distribution
Photovoltaic cells
Ruddlesden–Popper perovskites
Solar cells
title Over 21% Efficiency Stable 2D Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Over%2021%25%20Efficiency%20Stable%202D%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shao,%20Ming&rft.date=2022-01-01&rft.volume=34&rft.issue=1&rft.spage=e2107211&rft.epage=n/a&rft.pages=e2107211-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202107211&rft_dat=%3Cproquest_cross%3E2617231270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617231270&rft_id=info:pmid/34648207&rfr_iscdi=true