Slot‐scan dual‐energy bone densitometry using motorized X‐ray systems

Purpose We investigate the feasibility of slot‐scan dual‐energy (DE) bone densitometry on motorized radiographic equipment. This approach will enable fast quantitative measurements of areal bone mineral density (aBMD) for opportunistic evaluation of osteoporosis. Methods We investigated DE slot‐scan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2021-11, Vol.48 (11), p.6673-6695
Hauptverfasser: Zhao, Chumin, Herbst, Magdalena, Weber, Thomas, Luckner, Christoph, Vogt, Sebastian, Ritschl, Ludwig, Kappler, Steffen, Siewerdsen, Jeffrey H., Zbijewski, Wojciech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6695
container_issue 11
container_start_page 6673
container_title Medical physics (Lancaster)
container_volume 48
creator Zhao, Chumin
Herbst, Magdalena
Weber, Thomas
Luckner, Christoph
Vogt, Sebastian
Ritschl, Ludwig
Kappler, Steffen
Siewerdsen, Jeffrey H.
Zbijewski, Wojciech
description Purpose We investigate the feasibility of slot‐scan dual‐energy (DE) bone densitometry on motorized radiographic equipment. This approach will enable fast quantitative measurements of areal bone mineral density (aBMD) for opportunistic evaluation of osteoporosis. Methods We investigated DE slot‐scan protocols to obtain aBMD measurements at the lumbar spine (L‐spine) and hip using a motorized x‐ray platform capable of synchronized translation of the x‐ray source and flat‐panel detector (FPD). The slot dimension was 5 × 20 cm2. The DE slot views were processed as follows: (1) convolution kernel‐based scatter correction, (2) unfiltered backprojection to tile the slots into long‐length radiographs, and (3) projection‐domain DE decomposition, consisting of an initial adipose–water decomposition in a bone‐free region followed by water–CaHA decomposition with adjustment for adipose content. The accuracy and reproducibility of slot‐scan aBMD measurements were investigated using a high‐fidelity simulator of a robotic x‐ray system (Siemens Multitom Rax) in a total of 48 body phantom realizations: four average bone density settings (cortical bone mass fraction: 10–40%), four body sizes (waist circumference, WC = 70–106 cm), and three lateral shifts of the body within the slot field of view (FOV) (centered and ±1 cm off‐center). Experimental validations included: (1) x‐ray test‐bench feasibility study of adipose–water decomposition and (2) initial demonstration of slot‐scan DE bone densitometry on the robotic x‐ray system using the European Spine Phantom (ESP) with added attenuation (polymethyl methacrylate [PMMA] slabs) ranging 2 to 6 cm thick. Results For the L‐spine, the mean aBMD error across all WC settings ranged from 0.08 g/cm2 for phantoms with average cortical bone fraction wcortical = 10% to ∼0.01 g/cm2 for phantoms with wcortical = 40%. The L‐spine aBMD measurements were fairly robust to changes in body size and positioning, e.g., coefficient of variation (CV) for L1 with wcortical = 30% was ∼0.034 for various WC and ∼0.02 for an obese patient (WC = 106 cm) changing lateral shift. For the hip, the mean aBMD error across all phantom configurations was about 0.07 g/cm2 for a centered patient. The reproducibility of hip aBMD was slightly worse than in the L‐spine (e.g., in the femoral neck, the CV with respect to changing WC was ∼0.13 for phantom realizations with wcortical = 30%) due to more challenging scatter estimation in the presence of an air–tissue inte
doi_str_mv 10.1002/mp.15272
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580953523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580953523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2982-c42939eb221198373d218eb2618884db9c1052e9e288022c8b75f2987bf238683</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CPk6KU6mTTb5CiLX7iioIK30I_pUmmbmrRIPfkIPqNPYnUFT55mBn7_OfwZOxRwLADwpOmOhcIEt9gM40RGMYLZZjMAE0cYg9pleyE8A8BCKpix6_va9Z_vHyFPW14MaT3t1JJfjzxzLfGC2lD1rqHej3wIVbvmjeudr96o4E8T9unIwxh6asI-2ynTOtDB75yzx_Ozh-VltLq9uFqerqIcjcYoj9FIQxmiEEbLRBYo9HQuhNY6LjKTC1BIhlBrQMx1lqhySiZZiVIvtJyzo83fzruXgUJvmyrkVNdpS24IFpUGo6RC-Udz70LwVNrOV03qRyvAfvdlm87-9DXRaENfq5rGf529udv4Ly8sbTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580953523</pqid></control><display><type>article</type><title>Slot‐scan dual‐energy bone densitometry using motorized X‐ray systems</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Zhao, Chumin ; Herbst, Magdalena ; Weber, Thomas ; Luckner, Christoph ; Vogt, Sebastian ; Ritschl, Ludwig ; Kappler, Steffen ; Siewerdsen, Jeffrey H. ; Zbijewski, Wojciech</creator><creatorcontrib>Zhao, Chumin ; Herbst, Magdalena ; Weber, Thomas ; Luckner, Christoph ; Vogt, Sebastian ; Ritschl, Ludwig ; Kappler, Steffen ; Siewerdsen, Jeffrey H. ; Zbijewski, Wojciech</creatorcontrib><description>Purpose We investigate the feasibility of slot‐scan dual‐energy (DE) bone densitometry on motorized radiographic equipment. This approach will enable fast quantitative measurements of areal bone mineral density (aBMD) for opportunistic evaluation of osteoporosis. Methods We investigated DE slot‐scan protocols to obtain aBMD measurements at the lumbar spine (L‐spine) and hip using a motorized x‐ray platform capable of synchronized translation of the x‐ray source and flat‐panel detector (FPD). The slot dimension was 5 × 20 cm2. The DE slot views were processed as follows: (1) convolution kernel‐based scatter correction, (2) unfiltered backprojection to tile the slots into long‐length radiographs, and (3) projection‐domain DE decomposition, consisting of an initial adipose–water decomposition in a bone‐free region followed by water–CaHA decomposition with adjustment for adipose content. The accuracy and reproducibility of slot‐scan aBMD measurements were investigated using a high‐fidelity simulator of a robotic x‐ray system (Siemens Multitom Rax) in a total of 48 body phantom realizations: four average bone density settings (cortical bone mass fraction: 10–40%), four body sizes (waist circumference, WC = 70–106 cm), and three lateral shifts of the body within the slot field of view (FOV) (centered and ±1 cm off‐center). Experimental validations included: (1) x‐ray test‐bench feasibility study of adipose–water decomposition and (2) initial demonstration of slot‐scan DE bone densitometry on the robotic x‐ray system using the European Spine Phantom (ESP) with added attenuation (polymethyl methacrylate [PMMA] slabs) ranging 2 to 6 cm thick. Results For the L‐spine, the mean aBMD error across all WC settings ranged from 0.08 g/cm2 for phantoms with average cortical bone fraction wcortical = 10% to ∼0.01 g/cm2 for phantoms with wcortical = 40%. The L‐spine aBMD measurements were fairly robust to changes in body size and positioning, e.g., coefficient of variation (CV) for L1 with wcortical = 30% was ∼0.034 for various WC and ∼0.02 for an obese patient (WC = 106 cm) changing lateral shift. For the hip, the mean aBMD error across all phantom configurations was about 0.07 g/cm2 for a centered patient. The reproducibility of hip aBMD was slightly worse than in the L‐spine (e.g., in the femoral neck, the CV with respect to changing WC was ∼0.13 for phantom realizations with wcortical = 30%) due to more challenging scatter estimation in the presence of an air–tissue interface within the slot FOV. The aBMD of the hip was therefore sensitive to lateral positioning of the patient, especially for obese patients: e.g., the CV with respect to patient lateral shift for femoral neck with WC = 106 cm and wcortical = 30% was 0.14. Empirical evaluations confirmed substantial reduction in aBMD errors with the proposed adipose estimation procedure and demonstrated robust aBMD measurements on the robotic x‐ray system, with aBMD errors of ∼0.1 g/cm2 across all three simulated ESP vertebrae and all added PMMA attenuator settings. Conclusions We demonstrated that accurate aBMD measurements can be obtained on a motorized FPD‐based x‐ray system using DE slot‐scans with kernel‐based scatter correction, backprojection‐based slot view tiling, and DE decomposition with adipose correction.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.15272</identifier><language>eng</language><subject>bone mineral density (BMD) ; dual‐energy x‐ray absorptiometry (DXA) ; quantitative measurement ; robotic x‐ray systems ; slot‐scan</subject><ispartof>Medical physics (Lancaster), 2021-11, Vol.48 (11), p.6673-6695</ispartof><rights>2021 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2982-c42939eb221198373d218eb2618884db9c1052e9e288022c8b75f2987bf238683</citedby><cites>FETCH-LOGICAL-c2982-c42939eb221198373d218eb2618884db9c1052e9e288022c8b75f2987bf238683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.15272$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.15272$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhao, Chumin</creatorcontrib><creatorcontrib>Herbst, Magdalena</creatorcontrib><creatorcontrib>Weber, Thomas</creatorcontrib><creatorcontrib>Luckner, Christoph</creatorcontrib><creatorcontrib>Vogt, Sebastian</creatorcontrib><creatorcontrib>Ritschl, Ludwig</creatorcontrib><creatorcontrib>Kappler, Steffen</creatorcontrib><creatorcontrib>Siewerdsen, Jeffrey H.</creatorcontrib><creatorcontrib>Zbijewski, Wojciech</creatorcontrib><title>Slot‐scan dual‐energy bone densitometry using motorized X‐ray systems</title><title>Medical physics (Lancaster)</title><description>Purpose We investigate the feasibility of slot‐scan dual‐energy (DE) bone densitometry on motorized radiographic equipment. This approach will enable fast quantitative measurements of areal bone mineral density (aBMD) for opportunistic evaluation of osteoporosis. Methods We investigated DE slot‐scan protocols to obtain aBMD measurements at the lumbar spine (L‐spine) and hip using a motorized x‐ray platform capable of synchronized translation of the x‐ray source and flat‐panel detector (FPD). The slot dimension was 5 × 20 cm2. The DE slot views were processed as follows: (1) convolution kernel‐based scatter correction, (2) unfiltered backprojection to tile the slots into long‐length radiographs, and (3) projection‐domain DE decomposition, consisting of an initial adipose–water decomposition in a bone‐free region followed by water–CaHA decomposition with adjustment for adipose content. The accuracy and reproducibility of slot‐scan aBMD measurements were investigated using a high‐fidelity simulator of a robotic x‐ray system (Siemens Multitom Rax) in a total of 48 body phantom realizations: four average bone density settings (cortical bone mass fraction: 10–40%), four body sizes (waist circumference, WC = 70–106 cm), and three lateral shifts of the body within the slot field of view (FOV) (centered and ±1 cm off‐center). Experimental validations included: (1) x‐ray test‐bench feasibility study of adipose–water decomposition and (2) initial demonstration of slot‐scan DE bone densitometry on the robotic x‐ray system using the European Spine Phantom (ESP) with added attenuation (polymethyl methacrylate [PMMA] slabs) ranging 2 to 6 cm thick. Results For the L‐spine, the mean aBMD error across all WC settings ranged from 0.08 g/cm2 for phantoms with average cortical bone fraction wcortical = 10% to ∼0.01 g/cm2 for phantoms with wcortical = 40%. The L‐spine aBMD measurements were fairly robust to changes in body size and positioning, e.g., coefficient of variation (CV) for L1 with wcortical = 30% was ∼0.034 for various WC and ∼0.02 for an obese patient (WC = 106 cm) changing lateral shift. For the hip, the mean aBMD error across all phantom configurations was about 0.07 g/cm2 for a centered patient. The reproducibility of hip aBMD was slightly worse than in the L‐spine (e.g., in the femoral neck, the CV with respect to changing WC was ∼0.13 for phantom realizations with wcortical = 30%) due to more challenging scatter estimation in the presence of an air–tissue interface within the slot FOV. The aBMD of the hip was therefore sensitive to lateral positioning of the patient, especially for obese patients: e.g., the CV with respect to patient lateral shift for femoral neck with WC = 106 cm and wcortical = 30% was 0.14. Empirical evaluations confirmed substantial reduction in aBMD errors with the proposed adipose estimation procedure and demonstrated robust aBMD measurements on the robotic x‐ray system, with aBMD errors of ∼0.1 g/cm2 across all three simulated ESP vertebrae and all added PMMA attenuator settings. Conclusions We demonstrated that accurate aBMD measurements can be obtained on a motorized FPD‐based x‐ray system using DE slot‐scans with kernel‐based scatter correction, backprojection‐based slot view tiling, and DE decomposition with adipose correction.</description><subject>bone mineral density (BMD)</subject><subject>dual‐energy x‐ray absorptiometry (DXA)</subject><subject>quantitative measurement</subject><subject>robotic x‐ray systems</subject><subject>slot‐scan</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CPk6KU6mTTb5CiLX7iioIK30I_pUmmbmrRIPfkIPqNPYnUFT55mBn7_OfwZOxRwLADwpOmOhcIEt9gM40RGMYLZZjMAE0cYg9pleyE8A8BCKpix6_va9Z_vHyFPW14MaT3t1JJfjzxzLfGC2lD1rqHej3wIVbvmjeudr96o4E8T9unIwxh6asI-2ynTOtDB75yzx_Ozh-VltLq9uFqerqIcjcYoj9FIQxmiEEbLRBYo9HQuhNY6LjKTC1BIhlBrQMx1lqhySiZZiVIvtJyzo83fzruXgUJvmyrkVNdpS24IFpUGo6RC-Udz70LwVNrOV03qRyvAfvdlm87-9DXRaENfq5rGf529udv4Ly8sbTA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhao, Chumin</creator><creator>Herbst, Magdalena</creator><creator>Weber, Thomas</creator><creator>Luckner, Christoph</creator><creator>Vogt, Sebastian</creator><creator>Ritschl, Ludwig</creator><creator>Kappler, Steffen</creator><creator>Siewerdsen, Jeffrey H.</creator><creator>Zbijewski, Wojciech</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202111</creationdate><title>Slot‐scan dual‐energy bone densitometry using motorized X‐ray systems</title><author>Zhao, Chumin ; Herbst, Magdalena ; Weber, Thomas ; Luckner, Christoph ; Vogt, Sebastian ; Ritschl, Ludwig ; Kappler, Steffen ; Siewerdsen, Jeffrey H. ; Zbijewski, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2982-c42939eb221198373d218eb2618884db9c1052e9e288022c8b75f2987bf238683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bone mineral density (BMD)</topic><topic>dual‐energy x‐ray absorptiometry (DXA)</topic><topic>quantitative measurement</topic><topic>robotic x‐ray systems</topic><topic>slot‐scan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chumin</creatorcontrib><creatorcontrib>Herbst, Magdalena</creatorcontrib><creatorcontrib>Weber, Thomas</creatorcontrib><creatorcontrib>Luckner, Christoph</creatorcontrib><creatorcontrib>Vogt, Sebastian</creatorcontrib><creatorcontrib>Ritschl, Ludwig</creatorcontrib><creatorcontrib>Kappler, Steffen</creatorcontrib><creatorcontrib>Siewerdsen, Jeffrey H.</creatorcontrib><creatorcontrib>Zbijewski, Wojciech</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chumin</au><au>Herbst, Magdalena</au><au>Weber, Thomas</au><au>Luckner, Christoph</au><au>Vogt, Sebastian</au><au>Ritschl, Ludwig</au><au>Kappler, Steffen</au><au>Siewerdsen, Jeffrey H.</au><au>Zbijewski, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slot‐scan dual‐energy bone densitometry using motorized X‐ray systems</atitle><jtitle>Medical physics (Lancaster)</jtitle><date>2021-11</date><risdate>2021</risdate><volume>48</volume><issue>11</issue><spage>6673</spage><epage>6695</epage><pages>6673-6695</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose We investigate the feasibility of slot‐scan dual‐energy (DE) bone densitometry on motorized radiographic equipment. This approach will enable fast quantitative measurements of areal bone mineral density (aBMD) for opportunistic evaluation of osteoporosis. Methods We investigated DE slot‐scan protocols to obtain aBMD measurements at the lumbar spine (L‐spine) and hip using a motorized x‐ray platform capable of synchronized translation of the x‐ray source and flat‐panel detector (FPD). The slot dimension was 5 × 20 cm2. The DE slot views were processed as follows: (1) convolution kernel‐based scatter correction, (2) unfiltered backprojection to tile the slots into long‐length radiographs, and (3) projection‐domain DE decomposition, consisting of an initial adipose–water decomposition in a bone‐free region followed by water–CaHA decomposition with adjustment for adipose content. The accuracy and reproducibility of slot‐scan aBMD measurements were investigated using a high‐fidelity simulator of a robotic x‐ray system (Siemens Multitom Rax) in a total of 48 body phantom realizations: four average bone density settings (cortical bone mass fraction: 10–40%), four body sizes (waist circumference, WC = 70–106 cm), and three lateral shifts of the body within the slot field of view (FOV) (centered and ±1 cm off‐center). Experimental validations included: (1) x‐ray test‐bench feasibility study of adipose–water decomposition and (2) initial demonstration of slot‐scan DE bone densitometry on the robotic x‐ray system using the European Spine Phantom (ESP) with added attenuation (polymethyl methacrylate [PMMA] slabs) ranging 2 to 6 cm thick. Results For the L‐spine, the mean aBMD error across all WC settings ranged from 0.08 g/cm2 for phantoms with average cortical bone fraction wcortical = 10% to ∼0.01 g/cm2 for phantoms with wcortical = 40%. The L‐spine aBMD measurements were fairly robust to changes in body size and positioning, e.g., coefficient of variation (CV) for L1 with wcortical = 30% was ∼0.034 for various WC and ∼0.02 for an obese patient (WC = 106 cm) changing lateral shift. For the hip, the mean aBMD error across all phantom configurations was about 0.07 g/cm2 for a centered patient. The reproducibility of hip aBMD was slightly worse than in the L‐spine (e.g., in the femoral neck, the CV with respect to changing WC was ∼0.13 for phantom realizations with wcortical = 30%) due to more challenging scatter estimation in the presence of an air–tissue interface within the slot FOV. The aBMD of the hip was therefore sensitive to lateral positioning of the patient, especially for obese patients: e.g., the CV with respect to patient lateral shift for femoral neck with WC = 106 cm and wcortical = 30% was 0.14. Empirical evaluations confirmed substantial reduction in aBMD errors with the proposed adipose estimation procedure and demonstrated robust aBMD measurements on the robotic x‐ray system, with aBMD errors of ∼0.1 g/cm2 across all three simulated ESP vertebrae and all added PMMA attenuator settings. Conclusions We demonstrated that accurate aBMD measurements can be obtained on a motorized FPD‐based x‐ray system using DE slot‐scans with kernel‐based scatter correction, backprojection‐based slot view tiling, and DE decomposition with adipose correction.</abstract><doi>10.1002/mp.15272</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2021-11, Vol.48 (11), p.6673-6695
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_2580953523
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects bone mineral density (BMD)
dual‐energy x‐ray absorptiometry (DXA)
quantitative measurement
robotic x‐ray systems
slot‐scan
title Slot‐scan dual‐energy bone densitometry using motorized X‐ray systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slot%E2%80%90scan%20dual%E2%80%90energy%20bone%20densitometry%20using%20motorized%20X%E2%80%90ray%20systems&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Zhao,%20Chumin&rft.date=2021-11&rft.volume=48&rft.issue=11&rft.spage=6673&rft.epage=6695&rft.pages=6673-6695&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.15272&rft_dat=%3Cproquest_cross%3E2580953523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580953523&rft_id=info:pmid/&rfr_iscdi=true