Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell
In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhod...
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2021-11, Vol.27 (11), p.316-316, Article 316 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 11 |
container_start_page | 316 |
container_title | Journal of molecular modeling |
container_volume | 27 |
creator | Salim, Maham Rafiq, Mahira El-Badry, Yaser A. Khera, Rasheed Ahmad Khalid, Muhammad Iqbal, Javed |
description | In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2–M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695 nm) in chloroform, least band gap (2.24 eV), lowest values of λ
h
(0.0034 eV), and λ
e
(0.0054 eV) and lowermost binding energy (0.46 eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved V
oc
of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials.
Graphical abstract |
doi_str_mv | 10.1007/s00894-021-04922-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580951924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580951924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-65f7abd95d744f949acf55434ed5beff8d5c90880a38fe983bc2d90ab643bf9c3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi1ERUdtX4AFssSGjeHGP4m9rCoKSBXtYrphEznO9eAqEw92Muo8Aa-N0ykgsWDlhc8937U_Ql5X8L4CaD5kAG0kA14xkIZz9viCrMBIzRRw8ZKsqroCxo2EU3KR8wMAVFzVivNX5FTImmtVmxX5uZ7HMG7o9B1p3E0RB3RTimNwdJfiDtMUMNPo6bfbu_XlV-piQtbZjD3tMYW9ncK-AN2B7m06LCbrHBZRynSKNIwuYaEpeh9cwNEdFllMG7tE5DjYRB0Owzk58XbIePF8npH764_rq8_s5vbTl6vLG-ZEoyZWK9_Yrjeqb6T0RhrrvFJSSOxVVzJ0r5wBrcEK7dFo0TneG7BdLUXnjRNn5N3RW173Y8Y8tduQlwXsiHHOLVcajKoMlwV9-w_6EOc0lu2eKMUb1TSF4kfKpZhzQt_uUtiWv2graJem2mNTbWmqfWqqfSxDb57Vc7fF_s_I714KII5ALlfjBtPf7P9ofwEOZqFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580527577</pqid></control><display><type>article</type><title>Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Salim, Maham ; Rafiq, Mahira ; El-Badry, Yaser A. ; Khera, Rasheed Ahmad ; Khalid, Muhammad ; Iqbal, Javed</creator><creatorcontrib>Salim, Maham ; Rafiq, Mahira ; El-Badry, Yaser A. ; Khera, Rasheed Ahmad ; Khalid, Muhammad ; Iqbal, Javed</creatorcontrib><description>In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2–M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695 nm) in chloroform, least band gap (2.24 eV), lowest values of λ
h
(0.0034 eV), and λ
e
(0.0054 eV) and lowermost binding energy (0.46 eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved V
oc
of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials.
Graphical abstract</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-021-04922-x</identifier><identifier>PMID: 34628569</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption spectra ; Benzene ; Benzene - chemistry ; Characterization and Evaluation of Materials ; Chemical analysis ; Chemistry ; Chemistry and Materials Science ; Chloroform ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Conjugation ; Density distribution ; Dipole moments ; Donors (electronic) ; Electron density ; Electrons ; Excitons ; Fullerenes ; Hydrocarbons ; Malononitrile ; Mathematical analysis ; Methylene ; Models, Theoretical ; Molecular Medicine ; Molecular orbitals ; Molecular Structure ; Optical properties ; Optoelectronics ; Organic chemistry ; Original Paper ; Parameters ; Photovoltaic cells ; Quantum chemistry ; Quantum Theory ; Solar cells ; Solar Energy ; Theoretical and Computational Chemistry ; Thiophenes - chemistry</subject><ispartof>Journal of molecular modeling, 2021-11, Vol.27 (11), p.316-316, Article 316</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-65f7abd95d744f949acf55434ed5beff8d5c90880a38fe983bc2d90ab643bf9c3</citedby><cites>FETCH-LOGICAL-c375t-65f7abd95d744f949acf55434ed5beff8d5c90880a38fe983bc2d90ab643bf9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-021-04922-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-021-04922-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34628569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salim, Maham</creatorcontrib><creatorcontrib>Rafiq, Mahira</creatorcontrib><creatorcontrib>El-Badry, Yaser A.</creatorcontrib><creatorcontrib>Khera, Rasheed Ahmad</creatorcontrib><creatorcontrib>Khalid, Muhammad</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><title>Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2–M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695 nm) in chloroform, least band gap (2.24 eV), lowest values of λ
h
(0.0034 eV), and λ
e
(0.0054 eV) and lowermost binding energy (0.46 eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved V
oc
of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials.
Graphical abstract</description><subject>Absorption spectra</subject><subject>Benzene</subject><subject>Benzene - chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical analysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chloroform</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Conjugation</subject><subject>Density distribution</subject><subject>Dipole moments</subject><subject>Donors (electronic)</subject><subject>Electron density</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Fullerenes</subject><subject>Hydrocarbons</subject><subject>Malononitrile</subject><subject>Mathematical analysis</subject><subject>Methylene</subject><subject>Models, Theoretical</subject><subject>Molecular Medicine</subject><subject>Molecular orbitals</subject><subject>Molecular Structure</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>Quantum chemistry</subject><subject>Quantum Theory</subject><subject>Solar cells</subject><subject>Solar Energy</subject><subject>Theoretical and Computational Chemistry</subject><subject>Thiophenes - chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi1ERUdtX4AFssSGjeHGP4m9rCoKSBXtYrphEznO9eAqEw92Muo8Aa-N0ykgsWDlhc8937U_Ql5X8L4CaD5kAG0kA14xkIZz9viCrMBIzRRw8ZKsqroCxo2EU3KR8wMAVFzVivNX5FTImmtVmxX5uZ7HMG7o9B1p3E0RB3RTimNwdJfiDtMUMNPo6bfbu_XlV-piQtbZjD3tMYW9ncK-AN2B7m06LCbrHBZRynSKNIwuYaEpeh9cwNEdFllMG7tE5DjYRB0Owzk58XbIePF8npH764_rq8_s5vbTl6vLG-ZEoyZWK9_Yrjeqb6T0RhrrvFJSSOxVVzJ0r5wBrcEK7dFo0TneG7BdLUXnjRNn5N3RW173Y8Y8tduQlwXsiHHOLVcajKoMlwV9-w_6EOc0lu2eKMUb1TSF4kfKpZhzQt_uUtiWv2graJem2mNTbWmqfWqqfSxDb57Vc7fF_s_I714KII5ALlfjBtPf7P9ofwEOZqFY</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Salim, Maham</creator><creator>Rafiq, Mahira</creator><creator>El-Badry, Yaser A.</creator><creator>Khera, Rasheed Ahmad</creator><creator>Khalid, Muhammad</creator><creator>Iqbal, Javed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20211101</creationdate><title>Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell</title><author>Salim, Maham ; Rafiq, Mahira ; El-Badry, Yaser A. ; Khera, Rasheed Ahmad ; Khalid, Muhammad ; Iqbal, Javed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-65f7abd95d744f949acf55434ed5beff8d5c90880a38fe983bc2d90ab643bf9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Benzene</topic><topic>Benzene - chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical analysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chloroform</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Conjugation</topic><topic>Density distribution</topic><topic>Dipole moments</topic><topic>Donors (electronic)</topic><topic>Electron density</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Fullerenes</topic><topic>Hydrocarbons</topic><topic>Malononitrile</topic><topic>Mathematical analysis</topic><topic>Methylene</topic><topic>Models, Theoretical</topic><topic>Molecular Medicine</topic><topic>Molecular orbitals</topic><topic>Molecular Structure</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>Quantum chemistry</topic><topic>Quantum Theory</topic><topic>Solar cells</topic><topic>Solar Energy</topic><topic>Theoretical and Computational Chemistry</topic><topic>Thiophenes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salim, Maham</creatorcontrib><creatorcontrib>Rafiq, Mahira</creatorcontrib><creatorcontrib>El-Badry, Yaser A.</creatorcontrib><creatorcontrib>Khera, Rasheed Ahmad</creatorcontrib><creatorcontrib>Khalid, Muhammad</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salim, Maham</au><au>Rafiq, Mahira</au><au>El-Badry, Yaser A.</au><au>Khera, Rasheed Ahmad</au><au>Khalid, Muhammad</au><au>Iqbal, Javed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>27</volume><issue>11</issue><spage>316</spage><epage>316</epage><pages>316-316</pages><artnum>316</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2–M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695 nm) in chloroform, least band gap (2.24 eV), lowest values of λ
h
(0.0034 eV), and λ
e
(0.0054 eV) and lowermost binding energy (0.46 eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved V
oc
of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34628569</pmid><doi>10.1007/s00894-021-04922-x</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-2940 |
ispartof | Journal of molecular modeling, 2021-11, Vol.27 (11), p.316-316, Article 316 |
issn | 1610-2940 0948-5023 |
language | eng |
recordid | cdi_proquest_miscellaneous_2580951924 |
source | MEDLINE; SpringerLink Journals |
subjects | Absorption spectra Benzene Benzene - chemistry Characterization and Evaluation of Materials Chemical analysis Chemistry Chemistry and Materials Science Chloroform Computer Appl. in Life Sciences Computer Applications in Chemistry Conjugation Density distribution Dipole moments Donors (electronic) Electron density Electrons Excitons Fullerenes Hydrocarbons Malononitrile Mathematical analysis Methylene Models, Theoretical Molecular Medicine Molecular orbitals Molecular Structure Optical properties Optoelectronics Organic chemistry Original Paper Parameters Photovoltaic cells Quantum chemistry Quantum Theory Solar cells Solar Energy Theoretical and Computational Chemistry Thiophenes - chemistry |
title | Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20optoelectronic%20properties%20of%20ZOPTAN%20core-based%20derivatives%20by%20varying%20acceptors%20to%20increase%20efficiency%20of%20organic%20solar%20cell&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Salim,%20Maham&rft.date=2021-11-01&rft.volume=27&rft.issue=11&rft.spage=316&rft.epage=316&rft.pages=316-316&rft.artnum=316&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-021-04922-x&rft_dat=%3Cproquest_cross%3E2580951924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580527577&rft_id=info:pmid/34628569&rfr_iscdi=true |