Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell

In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2021-11, Vol.27 (11), p.316-316, Article 316
Hauptverfasser: Salim, Maham, Rafiq, Mahira, El-Badry, Yaser A., Khera, Rasheed Ahmad, Khalid, Muhammad, Iqbal, Javed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 11
container_start_page 316
container_title Journal of molecular modeling
container_volume 27
creator Salim, Maham
Rafiq, Mahira
El-Badry, Yaser A.
Khera, Rasheed Ahmad
Khalid, Muhammad
Iqbal, Javed
description In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2–M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695 nm) in chloroform, least band gap (2.24 eV), lowest values of λ h (0.0034 eV), and λ e (0.0054 eV) and lowermost binding energy (0.46 eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved V oc of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials. Graphical abstract
doi_str_mv 10.1007/s00894-021-04922-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580951924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580951924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-65f7abd95d744f949acf55434ed5beff8d5c90880a38fe983bc2d90ab643bf9c3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi1ERUdtX4AFssSGjeHGP4m9rCoKSBXtYrphEznO9eAqEw92Muo8Aa-N0ykgsWDlhc8937U_Ql5X8L4CaD5kAG0kA14xkIZz9viCrMBIzRRw8ZKsqroCxo2EU3KR8wMAVFzVivNX5FTImmtVmxX5uZ7HMG7o9B1p3E0RB3RTimNwdJfiDtMUMNPo6bfbu_XlV-piQtbZjD3tMYW9ncK-AN2B7m06LCbrHBZRynSKNIwuYaEpeh9cwNEdFllMG7tE5DjYRB0Owzk58XbIePF8npH764_rq8_s5vbTl6vLG-ZEoyZWK9_Yrjeqb6T0RhrrvFJSSOxVVzJ0r5wBrcEK7dFo0TneG7BdLUXnjRNn5N3RW173Y8Y8tduQlwXsiHHOLVcajKoMlwV9-w_6EOc0lu2eKMUb1TSF4kfKpZhzQt_uUtiWv2graJem2mNTbWmqfWqqfSxDb57Vc7fF_s_I714KII5ALlfjBtPf7P9ofwEOZqFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580527577</pqid></control><display><type>article</type><title>Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Salim, Maham ; Rafiq, Mahira ; El-Badry, Yaser A. ; Khera, Rasheed Ahmad ; Khalid, Muhammad ; Iqbal, Javed</creator><creatorcontrib>Salim, Maham ; Rafiq, Mahira ; El-Badry, Yaser A. ; Khera, Rasheed Ahmad ; Khalid, Muhammad ; Iqbal, Javed</creatorcontrib><description>In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2–M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695 nm) in chloroform, least band gap (2.24 eV), lowest values of λ h (0.0034 eV), and λ e (0.0054 eV) and lowermost binding energy (0.46 eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved V oc of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials. Graphical abstract</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-021-04922-x</identifier><identifier>PMID: 34628569</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption spectra ; Benzene ; Benzene - chemistry ; Characterization and Evaluation of Materials ; Chemical analysis ; Chemistry ; Chemistry and Materials Science ; Chloroform ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Conjugation ; Density distribution ; Dipole moments ; Donors (electronic) ; Electron density ; Electrons ; Excitons ; Fullerenes ; Hydrocarbons ; Malononitrile ; Mathematical analysis ; Methylene ; Models, Theoretical ; Molecular Medicine ; Molecular orbitals ; Molecular Structure ; Optical properties ; Optoelectronics ; Organic chemistry ; Original Paper ; Parameters ; Photovoltaic cells ; Quantum chemistry ; Quantum Theory ; Solar cells ; Solar Energy ; Theoretical and Computational Chemistry ; Thiophenes - chemistry</subject><ispartof>Journal of molecular modeling, 2021-11, Vol.27 (11), p.316-316, Article 316</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-65f7abd95d744f949acf55434ed5beff8d5c90880a38fe983bc2d90ab643bf9c3</citedby><cites>FETCH-LOGICAL-c375t-65f7abd95d744f949acf55434ed5beff8d5c90880a38fe983bc2d90ab643bf9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-021-04922-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-021-04922-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34628569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salim, Maham</creatorcontrib><creatorcontrib>Rafiq, Mahira</creatorcontrib><creatorcontrib>El-Badry, Yaser A.</creatorcontrib><creatorcontrib>Khera, Rasheed Ahmad</creatorcontrib><creatorcontrib>Khalid, Muhammad</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><title>Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2–M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695 nm) in chloroform, least band gap (2.24 eV), lowest values of λ h (0.0034 eV), and λ e (0.0054 eV) and lowermost binding energy (0.46 eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved V oc of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials. Graphical abstract</description><subject>Absorption spectra</subject><subject>Benzene</subject><subject>Benzene - chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical analysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chloroform</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Conjugation</subject><subject>Density distribution</subject><subject>Dipole moments</subject><subject>Donors (electronic)</subject><subject>Electron density</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Fullerenes</subject><subject>Hydrocarbons</subject><subject>Malononitrile</subject><subject>Mathematical analysis</subject><subject>Methylene</subject><subject>Models, Theoretical</subject><subject>Molecular Medicine</subject><subject>Molecular orbitals</subject><subject>Molecular Structure</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>Quantum chemistry</subject><subject>Quantum Theory</subject><subject>Solar cells</subject><subject>Solar Energy</subject><subject>Theoretical and Computational Chemistry</subject><subject>Thiophenes - chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi1ERUdtX4AFssSGjeHGP4m9rCoKSBXtYrphEznO9eAqEw92Muo8Aa-N0ykgsWDlhc8937U_Ql5X8L4CaD5kAG0kA14xkIZz9viCrMBIzRRw8ZKsqroCxo2EU3KR8wMAVFzVivNX5FTImmtVmxX5uZ7HMG7o9B1p3E0RB3RTimNwdJfiDtMUMNPo6bfbu_XlV-piQtbZjD3tMYW9ncK-AN2B7m06LCbrHBZRynSKNIwuYaEpeh9cwNEdFllMG7tE5DjYRB0Owzk58XbIePF8npH764_rq8_s5vbTl6vLG-ZEoyZWK9_Yrjeqb6T0RhrrvFJSSOxVVzJ0r5wBrcEK7dFo0TneG7BdLUXnjRNn5N3RW173Y8Y8tduQlwXsiHHOLVcajKoMlwV9-w_6EOc0lu2eKMUb1TSF4kfKpZhzQt_uUtiWv2graJem2mNTbWmqfWqqfSxDb57Vc7fF_s_I714KII5ALlfjBtPf7P9ofwEOZqFY</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Salim, Maham</creator><creator>Rafiq, Mahira</creator><creator>El-Badry, Yaser A.</creator><creator>Khera, Rasheed Ahmad</creator><creator>Khalid, Muhammad</creator><creator>Iqbal, Javed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20211101</creationdate><title>Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell</title><author>Salim, Maham ; Rafiq, Mahira ; El-Badry, Yaser A. ; Khera, Rasheed Ahmad ; Khalid, Muhammad ; Iqbal, Javed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-65f7abd95d744f949acf55434ed5beff8d5c90880a38fe983bc2d90ab643bf9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Benzene</topic><topic>Benzene - chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical analysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chloroform</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Conjugation</topic><topic>Density distribution</topic><topic>Dipole moments</topic><topic>Donors (electronic)</topic><topic>Electron density</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Fullerenes</topic><topic>Hydrocarbons</topic><topic>Malononitrile</topic><topic>Mathematical analysis</topic><topic>Methylene</topic><topic>Models, Theoretical</topic><topic>Molecular Medicine</topic><topic>Molecular orbitals</topic><topic>Molecular Structure</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>Quantum chemistry</topic><topic>Quantum Theory</topic><topic>Solar cells</topic><topic>Solar Energy</topic><topic>Theoretical and Computational Chemistry</topic><topic>Thiophenes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salim, Maham</creatorcontrib><creatorcontrib>Rafiq, Mahira</creatorcontrib><creatorcontrib>El-Badry, Yaser A.</creatorcontrib><creatorcontrib>Khera, Rasheed Ahmad</creatorcontrib><creatorcontrib>Khalid, Muhammad</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salim, Maham</au><au>Rafiq, Mahira</au><au>El-Badry, Yaser A.</au><au>Khera, Rasheed Ahmad</au><au>Khalid, Muhammad</au><au>Iqbal, Javed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>27</volume><issue>11</issue><spage>316</spage><epage>316</epage><pages>316-316</pages><artnum>316</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2–M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695 nm) in chloroform, least band gap (2.24 eV), lowest values of λ h (0.0034 eV), and λ e (0.0054 eV) and lowermost binding energy (0.46 eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved V oc of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34628569</pmid><doi>10.1007/s00894-021-04922-x</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2021-11, Vol.27 (11), p.316-316, Article 316
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_2580951924
source MEDLINE; SpringerLink Journals
subjects Absorption spectra
Benzene
Benzene - chemistry
Characterization and Evaluation of Materials
Chemical analysis
Chemistry
Chemistry and Materials Science
Chloroform
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Conjugation
Density distribution
Dipole moments
Donors (electronic)
Electron density
Electrons
Excitons
Fullerenes
Hydrocarbons
Malononitrile
Mathematical analysis
Methylene
Models, Theoretical
Molecular Medicine
Molecular orbitals
Molecular Structure
Optical properties
Optoelectronics
Organic chemistry
Original Paper
Parameters
Photovoltaic cells
Quantum chemistry
Quantum Theory
Solar cells
Solar Energy
Theoretical and Computational Chemistry
Thiophenes - chemistry
title Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20optoelectronic%20properties%20of%20ZOPTAN%20core-based%20derivatives%20by%20varying%20acceptors%20to%20increase%20efficiency%20of%20organic%20solar%20cell&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Salim,%20Maham&rft.date=2021-11-01&rft.volume=27&rft.issue=11&rft.spage=316&rft.epage=316&rft.pages=316-316&rft.artnum=316&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-021-04922-x&rft_dat=%3Cproquest_cross%3E2580951924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580527577&rft_id=info:pmid/34628569&rfr_iscdi=true