Molecular Self-Assembly of Oxygen Deep-Doped Ultrathin C3N4 with a Built-In Electric Field for Efficient Photocatalytic H2 Evolution

Heteroatom-doped carbon nitride (C3N4) with a built-in electric field can reinforce the carrier separation; however, the stability will be greatly reduced due to the loss of surface-doped atoms. Here, molecule self-assembly, as a facile bottom-up approach, is explored for the synthesis and oxygen do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2021-10, Vol.60 (20), p.15782-15796
Hauptverfasser: Zhang, Jingyu, Hu, Yifu, Li, Hui, Cao, Lili, Jiang, Zhengtong, Chai, Zhanli, Wang, Xiaojing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15796
container_issue 20
container_start_page 15782
container_title Inorganic chemistry
container_volume 60
creator Zhang, Jingyu
Hu, Yifu
Li, Hui
Cao, Lili
Jiang, Zhengtong
Chai, Zhanli
Wang, Xiaojing
description Heteroatom-doped carbon nitride (C3N4) with a built-in electric field can reinforce the carrier separation; however, the stability will be greatly reduced due to the loss of surface-doped atoms. Here, molecule self-assembly, as a facile bottom-up approach, is explored for the synthesis and oxygen doping of C3N4. The obtained C3N4 presents a porous and ultrathin structure and oxygen deep-doping, which generate abundant nitrogen vacancies and a stable built-in electric field. Toward photocatalytic hydrogen evolution, the ultrathin and oxygen deep-doped C3N4 exhibits a 3.5-fold higher activity than bulk C3N4 under simulated sunlight, and 3.6 times higher stability than the oxygen surface-doped counterpart within five cycles. Femtosecond transient absorption spectroscopy indicates the improved carrier separation, and density functional theory (DFT) calculation reveals the promoted H2O adsorption and activation under the built-in electric field, which contribute to the excellent photocatalytic performance of oxygen deep-doped ultrathin C3N4.
doi_str_mv 10.1021/acs.inorgchem.1c02456
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580696433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580696433</sourcerecordid><originalsourceid>FETCH-LOGICAL-a753-aedfa692cfc3691f2f7e37cd1b268b9900b4d59436394b1aee42c75a1e817c6e3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QcilN535aNPlcs7NDeYHqOBdSdOTNSNrZpOqu_eHW3F4dV4ODy8vD0KXlIwoYfRa6TCyjW_XuobtiGrC0kwcoQHNGEkySt6O0YCQPlMh5Ck6C2FDCJE8FQP0fe8d6M6pFj-DM8kkBNiWbo-9wY9f-zU0-BZgl9z6HVT41cVWxdo2eMofUvxpY40Vvumsi8mywbO-KrZW47kFV2HjWzwzxmoLTcRPtY9eq6jcPvbIguHZh3ddtL45RydGuQAXhztEL_PZy3SRrB7vltPJKlF5xhMFlVFCMm00F5IaZnLgua5oycS4lJKQMq0ymXLBZVpSBZAynWeKwpjmWgAfoqu_2l3r3zsIsdjaoME51YDvQsGyMRFSpJz3KP1De7fFxndt0-8qKCl-hRe_z3_hxUE4_wGMEHix</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580696433</pqid></control><display><type>article</type><title>Molecular Self-Assembly of Oxygen Deep-Doped Ultrathin C3N4 with a Built-In Electric Field for Efficient Photocatalytic H2 Evolution</title><source>ACS Publications</source><creator>Zhang, Jingyu ; Hu, Yifu ; Li, Hui ; Cao, Lili ; Jiang, Zhengtong ; Chai, Zhanli ; Wang, Xiaojing</creator><creatorcontrib>Zhang, Jingyu ; Hu, Yifu ; Li, Hui ; Cao, Lili ; Jiang, Zhengtong ; Chai, Zhanli ; Wang, Xiaojing</creatorcontrib><description>Heteroatom-doped carbon nitride (C3N4) with a built-in electric field can reinforce the carrier separation; however, the stability will be greatly reduced due to the loss of surface-doped atoms. Here, molecule self-assembly, as a facile bottom-up approach, is explored for the synthesis and oxygen doping of C3N4. The obtained C3N4 presents a porous and ultrathin structure and oxygen deep-doping, which generate abundant nitrogen vacancies and a stable built-in electric field. Toward photocatalytic hydrogen evolution, the ultrathin and oxygen deep-doped C3N4 exhibits a 3.5-fold higher activity than bulk C3N4 under simulated sunlight, and 3.6 times higher stability than the oxygen surface-doped counterpart within five cycles. Femtosecond transient absorption spectroscopy indicates the improved carrier separation, and density functional theory (DFT) calculation reveals the promoted H2O adsorption and activation under the built-in electric field, which contribute to the excellent photocatalytic performance of oxygen deep-doped ultrathin C3N4.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.1c02456</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Inorganic chemistry, 2021-10, Vol.60 (20), p.15782-15796</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6839-2990 ; 0000-0002-5599-2006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.1c02456$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02456$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27078,27926,27927,56740,56790</link.rule.ids></links><search><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Hu, Yifu</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cao, Lili</creatorcontrib><creatorcontrib>Jiang, Zhengtong</creatorcontrib><creatorcontrib>Chai, Zhanli</creatorcontrib><creatorcontrib>Wang, Xiaojing</creatorcontrib><title>Molecular Self-Assembly of Oxygen Deep-Doped Ultrathin C3N4 with a Built-In Electric Field for Efficient Photocatalytic H2 Evolution</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Heteroatom-doped carbon nitride (C3N4) with a built-in electric field can reinforce the carrier separation; however, the stability will be greatly reduced due to the loss of surface-doped atoms. Here, molecule self-assembly, as a facile bottom-up approach, is explored for the synthesis and oxygen doping of C3N4. The obtained C3N4 presents a porous and ultrathin structure and oxygen deep-doping, which generate abundant nitrogen vacancies and a stable built-in electric field. Toward photocatalytic hydrogen evolution, the ultrathin and oxygen deep-doped C3N4 exhibits a 3.5-fold higher activity than bulk C3N4 under simulated sunlight, and 3.6 times higher stability than the oxygen surface-doped counterpart within five cycles. Femtosecond transient absorption spectroscopy indicates the improved carrier separation, and density functional theory (DFT) calculation reveals the promoted H2O adsorption and activation under the built-in electric field, which contribute to the excellent photocatalytic performance of oxygen deep-doped ultrathin C3N4.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QcilN535aNPlcs7NDeYHqOBdSdOTNSNrZpOqu_eHW3F4dV4ODy8vD0KXlIwoYfRa6TCyjW_XuobtiGrC0kwcoQHNGEkySt6O0YCQPlMh5Ck6C2FDCJE8FQP0fe8d6M6pFj-DM8kkBNiWbo-9wY9f-zU0-BZgl9z6HVT41cVWxdo2eMofUvxpY40Vvumsi8mywbO-KrZW47kFV2HjWzwzxmoLTcRPtY9eq6jcPvbIguHZh3ddtL45RydGuQAXhztEL_PZy3SRrB7vltPJKlF5xhMFlVFCMm00F5IaZnLgua5oycS4lJKQMq0ymXLBZVpSBZAynWeKwpjmWgAfoqu_2l3r3zsIsdjaoME51YDvQsGyMRFSpJz3KP1De7fFxndt0-8qKCl-hRe_z3_hxUE4_wGMEHix</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Zhang, Jingyu</creator><creator>Hu, Yifu</creator><creator>Li, Hui</creator><creator>Cao, Lili</creator><creator>Jiang, Zhengtong</creator><creator>Chai, Zhanli</creator><creator>Wang, Xiaojing</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6839-2990</orcidid><orcidid>https://orcid.org/0000-0002-5599-2006</orcidid></search><sort><creationdate>20211018</creationdate><title>Molecular Self-Assembly of Oxygen Deep-Doped Ultrathin C3N4 with a Built-In Electric Field for Efficient Photocatalytic H2 Evolution</title><author>Zhang, Jingyu ; Hu, Yifu ; Li, Hui ; Cao, Lili ; Jiang, Zhengtong ; Chai, Zhanli ; Wang, Xiaojing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a753-aedfa692cfc3691f2f7e37cd1b268b9900b4d59436394b1aee42c75a1e817c6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Hu, Yifu</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cao, Lili</creatorcontrib><creatorcontrib>Jiang, Zhengtong</creatorcontrib><creatorcontrib>Chai, Zhanli</creatorcontrib><creatorcontrib>Wang, Xiaojing</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingyu</au><au>Hu, Yifu</au><au>Li, Hui</au><au>Cao, Lili</au><au>Jiang, Zhengtong</au><au>Chai, Zhanli</au><au>Wang, Xiaojing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Self-Assembly of Oxygen Deep-Doped Ultrathin C3N4 with a Built-In Electric Field for Efficient Photocatalytic H2 Evolution</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2021-10-18</date><risdate>2021</risdate><volume>60</volume><issue>20</issue><spage>15782</spage><epage>15796</epage><pages>15782-15796</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Heteroatom-doped carbon nitride (C3N4) with a built-in electric field can reinforce the carrier separation; however, the stability will be greatly reduced due to the loss of surface-doped atoms. Here, molecule self-assembly, as a facile bottom-up approach, is explored for the synthesis and oxygen doping of C3N4. The obtained C3N4 presents a porous and ultrathin structure and oxygen deep-doping, which generate abundant nitrogen vacancies and a stable built-in electric field. Toward photocatalytic hydrogen evolution, the ultrathin and oxygen deep-doped C3N4 exhibits a 3.5-fold higher activity than bulk C3N4 under simulated sunlight, and 3.6 times higher stability than the oxygen surface-doped counterpart within five cycles. Femtosecond transient absorption spectroscopy indicates the improved carrier separation, and density functional theory (DFT) calculation reveals the promoted H2O adsorption and activation under the built-in electric field, which contribute to the excellent photocatalytic performance of oxygen deep-doped ultrathin C3N4.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.inorgchem.1c02456</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6839-2990</orcidid><orcidid>https://orcid.org/0000-0002-5599-2006</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2021-10, Vol.60 (20), p.15782-15796
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2580696433
source ACS Publications
title Molecular Self-Assembly of Oxygen Deep-Doped Ultrathin C3N4 with a Built-In Electric Field for Efficient Photocatalytic H2 Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Self-Assembly%20of%20Oxygen%20Deep-Doped%20Ultrathin%20C3N4%20with%20a%20Built-In%20Electric%20Field%20for%20Efficient%20Photocatalytic%20H2%20Evolution&rft.jtitle=Inorganic%20chemistry&rft.au=Zhang,%20Jingyu&rft.date=2021-10-18&rft.volume=60&rft.issue=20&rft.spage=15782&rft.epage=15796&rft.pages=15782-15796&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.1c02456&rft_dat=%3Cproquest_acs_j%3E2580696433%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580696433&rft_id=info:pmid/&rfr_iscdi=true