Conductive CuCo‐Based Bimetal Organic Framework for Efficient Hydrogen Evolution

Metal–organic frameworks (MOFs) with intrinsically porous structures and well‐dispersed metal sites are promising candidates for electrocatalysis; however, the catalytic efficiencies of most MOFs are significantly limited by their impertinent adsorption/desorption energy of intermediates formed duri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-12, Vol.33 (49), p.e2106781-n/a
Hauptverfasser: Geng, Bo, Yan, Feng, Zhang, Xiao, He, Yuqian, Zhu, Chunling, Chou, Shu‐Lei, Zhang, Xiaoli, Chen, Yujin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 49
container_start_page e2106781
container_title Advanced materials (Weinheim)
container_volume 33
creator Geng, Bo
Yan, Feng
Zhang, Xiao
He, Yuqian
Zhu, Chunling
Chou, Shu‐Lei
Zhang, Xiaoli
Chen, Yujin
description Metal–organic frameworks (MOFs) with intrinsically porous structures and well‐dispersed metal sites are promising candidates for electrocatalysis; however, the catalytic efficiencies of most MOFs are significantly limited by their impertinent adsorption/desorption energy of intermediates formed during electrocatalysis and very low electrical conductivity. Herein, Co is introduced into conductive Cu‐catecholate (Cu‐CAT) nanorod arrays directly grown on a flexible carbon cloth for hydrogen evolution reaction (HER). Electrochemical results show that the Co‐incorporated Cu‐CAT nanorod arrays only need 52 and 143 mV overpotentials to drive a current density of 10 mA cm−2 in alkaline and neutral media for HER, respectively, much lower than most of the reported non‐noble metal‐based electrocatalysts and comparable to the benchmark Pt/C electrocatalyst. Density functional theory calculations show that the introduction of Co can optimize the adsorption energy of hydrogen (ΔGH*) of Cu sites, almost close to that of Pt (111). Furthermore, the adsorption energy of water (ΔEH2O) of Co sites in the CuCo‐CAT is significantly lower than that of Cu sites upon coupling Cu with Co, effectively accelerating the Volmer step in the HER process. The findings, synergistic effect of bimetals, open a new avenue for the rational design of highly efficient MOF‐based electrocatalysts. Conductive bimetal‐based catecholate (CAT) nanorod arrays show excellent hydrogen evolution reaction activities in both alkaline and neutral electrolyte, comparable to that of the benchmark Pt/C. Density functional theory calculations demonstrate that the incorporation of Co not only optimizes the ΔGH* and the adsorption energy of water (ΔEH2O) of Cu‐CAT, but also increases the electrical conductivity of Cu‐CAT.
doi_str_mv 10.1002/adma.202106781
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580695488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580695488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-76c1c7ba45a0a11fc64e815878185c2f176e676960d20e4f1e03eeb65658c3363</originalsourceid><addsrcrecordid>eNqFkD1v2zAQQImiQew6XTsWArp0kXskRYoaHcX5ABIYCNKZoKmTQVcSU1JK4K0_Ib8xv6QynKRAl0y3vHu4e4R8oTCnAOyHqVozZ8AoyFzRD2RKBaNpBoX4SKZQcJEWMlMT8inGLQAUEuQxmfBMMp5TPiW3pe-qwfbuAZNyKP3zn6dTE7FKTl2LvWmSVdiYztnkPJgWH334ldQ-JMu6dtZh1yeXuyr4DXbJ8sE3Q-98d0KOatNE_PwyZ-Tn-fKuvEyvVxdX5eI6tTznNM2lpTZfm0wYMJTWVmaoqFDjG0pYVtNcoszleHHFALOaInDEtRRSKMu55DPy_eC9D_73gLHXrYsWm8Z06IeomVAgC5EpNaLf_kO3fgjdeJ1mEnImCllkIzU_UDb4GAPW-j641oSdpqD3tfW-tn6rPS58fdEO6xarN_w17wgUB-DRNbh7R6cXZzeLf_K_Bn6Kqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607259694</pqid></control><display><type>article</type><title>Conductive CuCo‐Based Bimetal Organic Framework for Efficient Hydrogen Evolution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Geng, Bo ; Yan, Feng ; Zhang, Xiao ; He, Yuqian ; Zhu, Chunling ; Chou, Shu‐Lei ; Zhang, Xiaoli ; Chen, Yujin</creator><creatorcontrib>Geng, Bo ; Yan, Feng ; Zhang, Xiao ; He, Yuqian ; Zhu, Chunling ; Chou, Shu‐Lei ; Zhang, Xiaoli ; Chen, Yujin</creatorcontrib><description>Metal–organic frameworks (MOFs) with intrinsically porous structures and well‐dispersed metal sites are promising candidates for electrocatalysis; however, the catalytic efficiencies of most MOFs are significantly limited by their impertinent adsorption/desorption energy of intermediates formed during electrocatalysis and very low electrical conductivity. Herein, Co is introduced into conductive Cu‐catecholate (Cu‐CAT) nanorod arrays directly grown on a flexible carbon cloth for hydrogen evolution reaction (HER). Electrochemical results show that the Co‐incorporated Cu‐CAT nanorod arrays only need 52 and 143 mV overpotentials to drive a current density of 10 mA cm−2 in alkaline and neutral media for HER, respectively, much lower than most of the reported non‐noble metal‐based electrocatalysts and comparable to the benchmark Pt/C electrocatalyst. Density functional theory calculations show that the introduction of Co can optimize the adsorption energy of hydrogen (ΔGH*) of Cu sites, almost close to that of Pt (111). Furthermore, the adsorption energy of water (ΔEH2O) of Co sites in the CuCo‐CAT is significantly lower than that of Cu sites upon coupling Cu with Co, effectively accelerating the Volmer step in the HER process. The findings, synergistic effect of bimetals, open a new avenue for the rational design of highly efficient MOF‐based electrocatalysts. Conductive bimetal‐based catecholate (CAT) nanorod arrays show excellent hydrogen evolution reaction activities in both alkaline and neutral electrolyte, comparable to that of the benchmark Pt/C. Density functional theory calculations demonstrate that the incorporation of Co not only optimizes the ΔGH* and the adsorption energy of water (ΔEH2O) of Cu‐CAT, but also increases the electrical conductivity of Cu‐CAT.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202106781</identifier><identifier>PMID: 34623713</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Arrays ; Bimetals ; conductive metal–organic frameworks ; Density functional theory ; density functional theory calculation ; doping ; Electrical resistivity ; Electrocatalysis ; Electrocatalysts ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Hydrogen-based energy ; Metal-organic frameworks ; Nanorods ; Noble metals ; self‐supported electrode ; Synergistic effect</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (49), p.e2106781-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-76c1c7ba45a0a11fc64e815878185c2f176e676960d20e4f1e03eeb65658c3363</citedby><cites>FETCH-LOGICAL-c3731-76c1c7ba45a0a11fc64e815878185c2f176e676960d20e4f1e03eeb65658c3363</cites><orcidid>0000-0002-6794-2276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202106781$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202106781$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34623713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geng, Bo</creatorcontrib><creatorcontrib>Yan, Feng</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>He, Yuqian</creatorcontrib><creatorcontrib>Zhu, Chunling</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Chen, Yujin</creatorcontrib><title>Conductive CuCo‐Based Bimetal Organic Framework for Efficient Hydrogen Evolution</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Metal–organic frameworks (MOFs) with intrinsically porous structures and well‐dispersed metal sites are promising candidates for electrocatalysis; however, the catalytic efficiencies of most MOFs are significantly limited by their impertinent adsorption/desorption energy of intermediates formed during electrocatalysis and very low electrical conductivity. Herein, Co is introduced into conductive Cu‐catecholate (Cu‐CAT) nanorod arrays directly grown on a flexible carbon cloth for hydrogen evolution reaction (HER). Electrochemical results show that the Co‐incorporated Cu‐CAT nanorod arrays only need 52 and 143 mV overpotentials to drive a current density of 10 mA cm−2 in alkaline and neutral media for HER, respectively, much lower than most of the reported non‐noble metal‐based electrocatalysts and comparable to the benchmark Pt/C electrocatalyst. Density functional theory calculations show that the introduction of Co can optimize the adsorption energy of hydrogen (ΔGH*) of Cu sites, almost close to that of Pt (111). Furthermore, the adsorption energy of water (ΔEH2O) of Co sites in the CuCo‐CAT is significantly lower than that of Cu sites upon coupling Cu with Co, effectively accelerating the Volmer step in the HER process. The findings, synergistic effect of bimetals, open a new avenue for the rational design of highly efficient MOF‐based electrocatalysts. Conductive bimetal‐based catecholate (CAT) nanorod arrays show excellent hydrogen evolution reaction activities in both alkaline and neutral electrolyte, comparable to that of the benchmark Pt/C. Density functional theory calculations demonstrate that the incorporation of Co not only optimizes the ΔGH* and the adsorption energy of water (ΔEH2O) of Cu‐CAT, but also increases the electrical conductivity of Cu‐CAT.</description><subject>Adsorption</subject><subject>Arrays</subject><subject>Bimetals</subject><subject>conductive metal–organic frameworks</subject><subject>Density functional theory</subject><subject>density functional theory calculation</subject><subject>doping</subject><subject>Electrical resistivity</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen-based energy</subject><subject>Metal-organic frameworks</subject><subject>Nanorods</subject><subject>Noble metals</subject><subject>self‐supported electrode</subject><subject>Synergistic effect</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1v2zAQQImiQew6XTsWArp0kXskRYoaHcX5ABIYCNKZoKmTQVcSU1JK4K0_Ib8xv6QynKRAl0y3vHu4e4R8oTCnAOyHqVozZ8AoyFzRD2RKBaNpBoX4SKZQcJEWMlMT8inGLQAUEuQxmfBMMp5TPiW3pe-qwfbuAZNyKP3zn6dTE7FKTl2LvWmSVdiYztnkPJgWH334ldQ-JMu6dtZh1yeXuyr4DXbJ8sE3Q-98d0KOatNE_PwyZ-Tn-fKuvEyvVxdX5eI6tTznNM2lpTZfm0wYMJTWVmaoqFDjG0pYVtNcoszleHHFALOaInDEtRRSKMu55DPy_eC9D_73gLHXrYsWm8Z06IeomVAgC5EpNaLf_kO3fgjdeJ1mEnImCllkIzU_UDb4GAPW-j641oSdpqD3tfW-tn6rPS58fdEO6xarN_w17wgUB-DRNbh7R6cXZzeLf_K_Bn6Kqg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Geng, Bo</creator><creator>Yan, Feng</creator><creator>Zhang, Xiao</creator><creator>He, Yuqian</creator><creator>Zhu, Chunling</creator><creator>Chou, Shu‐Lei</creator><creator>Zhang, Xiaoli</creator><creator>Chen, Yujin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6794-2276</orcidid></search><sort><creationdate>20211201</creationdate><title>Conductive CuCo‐Based Bimetal Organic Framework for Efficient Hydrogen Evolution</title><author>Geng, Bo ; Yan, Feng ; Zhang, Xiao ; He, Yuqian ; Zhu, Chunling ; Chou, Shu‐Lei ; Zhang, Xiaoli ; Chen, Yujin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-76c1c7ba45a0a11fc64e815878185c2f176e676960d20e4f1e03eeb65658c3363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Arrays</topic><topic>Bimetals</topic><topic>conductive metal–organic frameworks</topic><topic>Density functional theory</topic><topic>density functional theory calculation</topic><topic>doping</topic><topic>Electrical resistivity</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen-based energy</topic><topic>Metal-organic frameworks</topic><topic>Nanorods</topic><topic>Noble metals</topic><topic>self‐supported electrode</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Bo</creatorcontrib><creatorcontrib>Yan, Feng</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>He, Yuqian</creatorcontrib><creatorcontrib>Zhu, Chunling</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Chen, Yujin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Bo</au><au>Yan, Feng</au><au>Zhang, Xiao</au><au>He, Yuqian</au><au>Zhu, Chunling</au><au>Chou, Shu‐Lei</au><au>Zhang, Xiaoli</au><au>Chen, Yujin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive CuCo‐Based Bimetal Organic Framework for Efficient Hydrogen Evolution</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>49</issue><spage>e2106781</spage><epage>n/a</epage><pages>e2106781-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Metal–organic frameworks (MOFs) with intrinsically porous structures and well‐dispersed metal sites are promising candidates for electrocatalysis; however, the catalytic efficiencies of most MOFs are significantly limited by their impertinent adsorption/desorption energy of intermediates formed during electrocatalysis and very low electrical conductivity. Herein, Co is introduced into conductive Cu‐catecholate (Cu‐CAT) nanorod arrays directly grown on a flexible carbon cloth for hydrogen evolution reaction (HER). Electrochemical results show that the Co‐incorporated Cu‐CAT nanorod arrays only need 52 and 143 mV overpotentials to drive a current density of 10 mA cm−2 in alkaline and neutral media for HER, respectively, much lower than most of the reported non‐noble metal‐based electrocatalysts and comparable to the benchmark Pt/C electrocatalyst. Density functional theory calculations show that the introduction of Co can optimize the adsorption energy of hydrogen (ΔGH*) of Cu sites, almost close to that of Pt (111). Furthermore, the adsorption energy of water (ΔEH2O) of Co sites in the CuCo‐CAT is significantly lower than that of Cu sites upon coupling Cu with Co, effectively accelerating the Volmer step in the HER process. The findings, synergistic effect of bimetals, open a new avenue for the rational design of highly efficient MOF‐based electrocatalysts. Conductive bimetal‐based catecholate (CAT) nanorod arrays show excellent hydrogen evolution reaction activities in both alkaline and neutral electrolyte, comparable to that of the benchmark Pt/C. Density functional theory calculations demonstrate that the incorporation of Co not only optimizes the ΔGH* and the adsorption energy of water (ΔEH2O) of Cu‐CAT, but also increases the electrical conductivity of Cu‐CAT.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34623713</pmid><doi>10.1002/adma.202106781</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6794-2276</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-12, Vol.33 (49), p.e2106781-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2580695488
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Arrays
Bimetals
conductive metal–organic frameworks
Density functional theory
density functional theory calculation
doping
Electrical resistivity
Electrocatalysis
Electrocatalysts
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen-based energy
Metal-organic frameworks
Nanorods
Noble metals
self‐supported electrode
Synergistic effect
title Conductive CuCo‐Based Bimetal Organic Framework for Efficient Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20CuCo%E2%80%90Based%20Bimetal%20Organic%20Framework%20for%20Efficient%20Hydrogen%20Evolution&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Geng,%20Bo&rft.date=2021-12-01&rft.volume=33&rft.issue=49&rft.spage=e2106781&rft.epage=n/a&rft.pages=e2106781-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202106781&rft_dat=%3Cproquest_cross%3E2580695488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607259694&rft_id=info:pmid/34623713&rfr_iscdi=true