2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions
[Display omitted] Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprece...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2022-02, Vol.608 (Pt 1), p.564-574 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | Pt 1 |
container_start_page | 564 |
container_title | Journal of colloid and interface science |
container_volume | 608 |
creator | Yakovlev, Egor V. Kryuchkov, Nikita P. Korsakova, Sofia A. Dmitryuk, Nikita A. Ovcharov, Pavel V. Andronic, Mihail M. Rodionov, Ilya A. Sapelkin, Andrei V. Yurchenko, Stanislav O. |
description | [Display omitted]
Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems. |
doi_str_mv | 10.1016/j.jcis.2021.09.116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580694135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721015757</els_id><sourcerecordid>2580694135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-96c03c5e695244cb97787ff0bc8314d2badfc9b8bda3cfba28be34f118949e3b3</originalsourceid><addsrcrecordid>eNp9kLtOXDEQQC0Egg3wAymQyzT34sd9GdGghQQkJBqoLT_GxCvvNdhepP17vFqSkmqKOXOkOQj9pKSlhA6Xq3ZlfG4ZYbQloqV0OEALSkTfjJTwQ7QgddOIUYwn6EfOK0Io7XtxjE54N7BBiGGBJLvFJoYQvc3YzzjFooqfXzEEMCV5g52HYPMVvsFB6ZhUiWmLo8O5pFi5spmVDoDL3wTQ6Gi3VVMgKVN8nPMZOnIqZDj_mqfo5ffd8_K-eXz687C8eWxMR0hpxGAINz0MomddZ7QYx2l0jmgzcdpZppV1RuhJW8WN04pNGnjnKJ1EJ4Brfop-7b1vKb5vIBe59tlACGqGuMmS9RMZREd5X1G2R02KOSdw8i35tUpbSYnchZUruQsrd2ElEbKGrUcXX_6NXoP9f_KvZAWu9wDULz88JJmNh9mA9amWlDb67_yfQCGLEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580694135</pqid></control><display><type>article</type><title>2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Yakovlev, Egor V. ; Kryuchkov, Nikita P. ; Korsakova, Sofia A. ; Dmitryuk, Nikita A. ; Ovcharov, Pavel V. ; Andronic, Mihail M. ; Rodionov, Ilya A. ; Sapelkin, Andrei V. ; Yurchenko, Stanislav O.</creator><creatorcontrib>Yakovlev, Egor V. ; Kryuchkov, Nikita P. ; Korsakova, Sofia A. ; Dmitryuk, Nikita A. ; Ovcharov, Pavel V. ; Andronic, Mihail M. ; Rodionov, Ilya A. ; Sapelkin, Andrei V. ; Yurchenko, Stanislav O.</creatorcontrib><description>[Display omitted]
Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.09.116</identifier><identifier>PMID: 34626996</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Colloids ; Electricity ; Laboratories ; Many-body interactions ; Molecular dynamics simulations ; Phase diagram ; Phase Transition ; Phase transitions ; Rotating electric fields ; Self-assembly ; Tunable interactions ; Water</subject><ispartof>Journal of colloid and interface science, 2022-02, Vol.608 (Pt 1), p.564-574</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-96c03c5e695244cb97787ff0bc8314d2badfc9b8bda3cfba28be34f118949e3b3</citedby><cites>FETCH-LOGICAL-c400t-96c03c5e695244cb97787ff0bc8314d2badfc9b8bda3cfba28be34f118949e3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979721015757$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34626996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yakovlev, Egor V.</creatorcontrib><creatorcontrib>Kryuchkov, Nikita P.</creatorcontrib><creatorcontrib>Korsakova, Sofia A.</creatorcontrib><creatorcontrib>Dmitryuk, Nikita A.</creatorcontrib><creatorcontrib>Ovcharov, Pavel V.</creatorcontrib><creatorcontrib>Andronic, Mihail M.</creatorcontrib><creatorcontrib>Rodionov, Ilya A.</creatorcontrib><creatorcontrib>Sapelkin, Andrei V.</creatorcontrib><creatorcontrib>Yurchenko, Stanislav O.</creatorcontrib><title>2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.</description><subject>Colloids</subject><subject>Electricity</subject><subject>Laboratories</subject><subject>Many-body interactions</subject><subject>Molecular dynamics simulations</subject><subject>Phase diagram</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Rotating electric fields</subject><subject>Self-assembly</subject><subject>Tunable interactions</subject><subject>Water</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOXDEQQC0Egg3wAymQyzT34sd9GdGghQQkJBqoLT_GxCvvNdhepP17vFqSkmqKOXOkOQj9pKSlhA6Xq3ZlfG4ZYbQloqV0OEALSkTfjJTwQ7QgddOIUYwn6EfOK0Io7XtxjE54N7BBiGGBJLvFJoYQvc3YzzjFooqfXzEEMCV5g52HYPMVvsFB6ZhUiWmLo8O5pFi5spmVDoDL3wTQ6Gi3VVMgKVN8nPMZOnIqZDj_mqfo5ffd8_K-eXz687C8eWxMR0hpxGAINz0MomddZ7QYx2l0jmgzcdpZppV1RuhJW8WN04pNGnjnKJ1EJ4Brfop-7b1vKb5vIBe59tlACGqGuMmS9RMZREd5X1G2R02KOSdw8i35tUpbSYnchZUruQsrd2ElEbKGrUcXX_6NXoP9f_KvZAWu9wDULz88JJmNh9mA9amWlDb67_yfQCGLEQ</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Yakovlev, Egor V.</creator><creator>Kryuchkov, Nikita P.</creator><creator>Korsakova, Sofia A.</creator><creator>Dmitryuk, Nikita A.</creator><creator>Ovcharov, Pavel V.</creator><creator>Andronic, Mihail M.</creator><creator>Rodionov, Ilya A.</creator><creator>Sapelkin, Andrei V.</creator><creator>Yurchenko, Stanislav O.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220215</creationdate><title>2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions</title><author>Yakovlev, Egor V. ; Kryuchkov, Nikita P. ; Korsakova, Sofia A. ; Dmitryuk, Nikita A. ; Ovcharov, Pavel V. ; Andronic, Mihail M. ; Rodionov, Ilya A. ; Sapelkin, Andrei V. ; Yurchenko, Stanislav O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-96c03c5e695244cb97787ff0bc8314d2badfc9b8bda3cfba28be34f118949e3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Colloids</topic><topic>Electricity</topic><topic>Laboratories</topic><topic>Many-body interactions</topic><topic>Molecular dynamics simulations</topic><topic>Phase diagram</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Rotating electric fields</topic><topic>Self-assembly</topic><topic>Tunable interactions</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakovlev, Egor V.</creatorcontrib><creatorcontrib>Kryuchkov, Nikita P.</creatorcontrib><creatorcontrib>Korsakova, Sofia A.</creatorcontrib><creatorcontrib>Dmitryuk, Nikita A.</creatorcontrib><creatorcontrib>Ovcharov, Pavel V.</creatorcontrib><creatorcontrib>Andronic, Mihail M.</creatorcontrib><creatorcontrib>Rodionov, Ilya A.</creatorcontrib><creatorcontrib>Sapelkin, Andrei V.</creatorcontrib><creatorcontrib>Yurchenko, Stanislav O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yakovlev, Egor V.</au><au>Kryuchkov, Nikita P.</au><au>Korsakova, Sofia A.</au><au>Dmitryuk, Nikita A.</au><au>Ovcharov, Pavel V.</au><au>Andronic, Mihail M.</au><au>Rodionov, Ilya A.</au><au>Sapelkin, Andrei V.</au><au>Yurchenko, Stanislav O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>608</volume><issue>Pt 1</issue><spage>564</spage><epage>574</epage><pages>564-574</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34626996</pmid><doi>10.1016/j.jcis.2021.09.116</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2022-02, Vol.608 (Pt 1), p.564-574 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2580694135 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Colloids Electricity Laboratories Many-body interactions Molecular dynamics simulations Phase diagram Phase Transition Phase transitions Rotating electric fields Self-assembly Tunable interactions Water |
title | 2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20colloids%20in%20rotating%20electric%20fields:%20A%20laboratory%20of%20strong%20tunable%20three-body%20interactions&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Yakovlev,%20Egor%20V.&rft.date=2022-02-15&rft.volume=608&rft.issue=Pt%201&rft.spage=564&rft.epage=574&rft.pages=564-574&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.09.116&rft_dat=%3Cproquest_cross%3E2580694135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580694135&rft_id=info:pmid/34626996&rft_els_id=S0021979721015757&rfr_iscdi=true |