2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions

[Display omitted] Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-02, Vol.608 (Pt 1), p.564-574
Hauptverfasser: Yakovlev, Egor V., Kryuchkov, Nikita P., Korsakova, Sofia A., Dmitryuk, Nikita A., Ovcharov, Pavel V., Andronic, Mihail M., Rodionov, Ilya A., Sapelkin, Andrei V., Yurchenko, Stanislav O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue Pt 1
container_start_page 564
container_title Journal of colloid and interface science
container_volume 608
creator Yakovlev, Egor V.
Kryuchkov, Nikita P.
Korsakova, Sofia A.
Dmitryuk, Nikita A.
Ovcharov, Pavel V.
Andronic, Mihail M.
Rodionov, Ilya A.
Sapelkin, Andrei V.
Yurchenko, Stanislav O.
description [Display omitted] Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.
doi_str_mv 10.1016/j.jcis.2021.09.116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580694135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721015757</els_id><sourcerecordid>2580694135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-96c03c5e695244cb97787ff0bc8314d2badfc9b8bda3cfba28be34f118949e3b3</originalsourceid><addsrcrecordid>eNp9kLtOXDEQQC0Egg3wAymQyzT34sd9GdGghQQkJBqoLT_GxCvvNdhepP17vFqSkmqKOXOkOQj9pKSlhA6Xq3ZlfG4ZYbQloqV0OEALSkTfjJTwQ7QgddOIUYwn6EfOK0Io7XtxjE54N7BBiGGBJLvFJoYQvc3YzzjFooqfXzEEMCV5g52HYPMVvsFB6ZhUiWmLo8O5pFi5spmVDoDL3wTQ6Gi3VVMgKVN8nPMZOnIqZDj_mqfo5ffd8_K-eXz687C8eWxMR0hpxGAINz0MomddZ7QYx2l0jmgzcdpZppV1RuhJW8WN04pNGnjnKJ1EJ4Brfop-7b1vKb5vIBe59tlACGqGuMmS9RMZREd5X1G2R02KOSdw8i35tUpbSYnchZUruQsrd2ElEbKGrUcXX_6NXoP9f_KvZAWu9wDULz88JJmNh9mA9amWlDb67_yfQCGLEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580694135</pqid></control><display><type>article</type><title>2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Yakovlev, Egor V. ; Kryuchkov, Nikita P. ; Korsakova, Sofia A. ; Dmitryuk, Nikita A. ; Ovcharov, Pavel V. ; Andronic, Mihail M. ; Rodionov, Ilya A. ; Sapelkin, Andrei V. ; Yurchenko, Stanislav O.</creator><creatorcontrib>Yakovlev, Egor V. ; Kryuchkov, Nikita P. ; Korsakova, Sofia A. ; Dmitryuk, Nikita A. ; Ovcharov, Pavel V. ; Andronic, Mihail M. ; Rodionov, Ilya A. ; Sapelkin, Andrei V. ; Yurchenko, Stanislav O.</creatorcontrib><description>[Display omitted] Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.09.116</identifier><identifier>PMID: 34626996</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Colloids ; Electricity ; Laboratories ; Many-body interactions ; Molecular dynamics simulations ; Phase diagram ; Phase Transition ; Phase transitions ; Rotating electric fields ; Self-assembly ; Tunable interactions ; Water</subject><ispartof>Journal of colloid and interface science, 2022-02, Vol.608 (Pt 1), p.564-574</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-96c03c5e695244cb97787ff0bc8314d2badfc9b8bda3cfba28be34f118949e3b3</citedby><cites>FETCH-LOGICAL-c400t-96c03c5e695244cb97787ff0bc8314d2badfc9b8bda3cfba28be34f118949e3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979721015757$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34626996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yakovlev, Egor V.</creatorcontrib><creatorcontrib>Kryuchkov, Nikita P.</creatorcontrib><creatorcontrib>Korsakova, Sofia A.</creatorcontrib><creatorcontrib>Dmitryuk, Nikita A.</creatorcontrib><creatorcontrib>Ovcharov, Pavel V.</creatorcontrib><creatorcontrib>Andronic, Mihail M.</creatorcontrib><creatorcontrib>Rodionov, Ilya A.</creatorcontrib><creatorcontrib>Sapelkin, Andrei V.</creatorcontrib><creatorcontrib>Yurchenko, Stanislav O.</creatorcontrib><title>2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.</description><subject>Colloids</subject><subject>Electricity</subject><subject>Laboratories</subject><subject>Many-body interactions</subject><subject>Molecular dynamics simulations</subject><subject>Phase diagram</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Rotating electric fields</subject><subject>Self-assembly</subject><subject>Tunable interactions</subject><subject>Water</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOXDEQQC0Egg3wAymQyzT34sd9GdGghQQkJBqoLT_GxCvvNdhepP17vFqSkmqKOXOkOQj9pKSlhA6Xq3ZlfG4ZYbQloqV0OEALSkTfjJTwQ7QgddOIUYwn6EfOK0Io7XtxjE54N7BBiGGBJLvFJoYQvc3YzzjFooqfXzEEMCV5g52HYPMVvsFB6ZhUiWmLo8O5pFi5spmVDoDL3wTQ6Gi3VVMgKVN8nPMZOnIqZDj_mqfo5ffd8_K-eXz687C8eWxMR0hpxGAINz0MomddZ7QYx2l0jmgzcdpZppV1RuhJW8WN04pNGnjnKJ1EJ4Brfop-7b1vKb5vIBe59tlACGqGuMmS9RMZREd5X1G2R02KOSdw8i35tUpbSYnchZUruQsrd2ElEbKGrUcXX_6NXoP9f_KvZAWu9wDULz88JJmNh9mA9amWlDb67_yfQCGLEQ</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Yakovlev, Egor V.</creator><creator>Kryuchkov, Nikita P.</creator><creator>Korsakova, Sofia A.</creator><creator>Dmitryuk, Nikita A.</creator><creator>Ovcharov, Pavel V.</creator><creator>Andronic, Mihail M.</creator><creator>Rodionov, Ilya A.</creator><creator>Sapelkin, Andrei V.</creator><creator>Yurchenko, Stanislav O.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220215</creationdate><title>2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions</title><author>Yakovlev, Egor V. ; Kryuchkov, Nikita P. ; Korsakova, Sofia A. ; Dmitryuk, Nikita A. ; Ovcharov, Pavel V. ; Andronic, Mihail M. ; Rodionov, Ilya A. ; Sapelkin, Andrei V. ; Yurchenko, Stanislav O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-96c03c5e695244cb97787ff0bc8314d2badfc9b8bda3cfba28be34f118949e3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Colloids</topic><topic>Electricity</topic><topic>Laboratories</topic><topic>Many-body interactions</topic><topic>Molecular dynamics simulations</topic><topic>Phase diagram</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Rotating electric fields</topic><topic>Self-assembly</topic><topic>Tunable interactions</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakovlev, Egor V.</creatorcontrib><creatorcontrib>Kryuchkov, Nikita P.</creatorcontrib><creatorcontrib>Korsakova, Sofia A.</creatorcontrib><creatorcontrib>Dmitryuk, Nikita A.</creatorcontrib><creatorcontrib>Ovcharov, Pavel V.</creatorcontrib><creatorcontrib>Andronic, Mihail M.</creatorcontrib><creatorcontrib>Rodionov, Ilya A.</creatorcontrib><creatorcontrib>Sapelkin, Andrei V.</creatorcontrib><creatorcontrib>Yurchenko, Stanislav O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yakovlev, Egor V.</au><au>Kryuchkov, Nikita P.</au><au>Korsakova, Sofia A.</au><au>Dmitryuk, Nikita A.</au><au>Ovcharov, Pavel V.</au><au>Andronic, Mihail M.</au><au>Rodionov, Ilya A.</au><au>Sapelkin, Andrei V.</au><au>Yurchenko, Stanislav O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>608</volume><issue>Pt 1</issue><spage>564</spage><epage>574</epage><pages>564-574</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34626996</pmid><doi>10.1016/j.jcis.2021.09.116</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-02, Vol.608 (Pt 1), p.564-574
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2580694135
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Colloids
Electricity
Laboratories
Many-body interactions
Molecular dynamics simulations
Phase diagram
Phase Transition
Phase transitions
Rotating electric fields
Self-assembly
Tunable interactions
Water
title 2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20colloids%20in%20rotating%20electric%20fields:%20A%20laboratory%20of%20strong%20tunable%20three-body%20interactions&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Yakovlev,%20Egor%20V.&rft.date=2022-02-15&rft.volume=608&rft.issue=Pt%201&rft.spage=564&rft.epage=574&rft.pages=564-574&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.09.116&rft_dat=%3Cproquest_cross%3E2580694135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580694135&rft_id=info:pmid/34626996&rft_els_id=S0021979721015757&rfr_iscdi=true