Backward Data Transfer From Deeply Implanted Device Employing Ultrasonic Load Amplitude-Phase Shift Keying

Ultrasonic transcutaneous energy transfer (UTET) is used to wirelessly energize low-power miniature implanted devices. Whenever backward data transfer from the implant is of interest, load modulation may be utilized. With load modulation, data is sent backward by imposing ultrasonic reflections from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2022-01, Vol.69 (1), p.199-207
Hauptverfasser: Ozeri, Shaul, Amrani, Ofer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 1
container_start_page 199
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 69
creator Ozeri, Shaul
Amrani, Ofer
description Ultrasonic transcutaneous energy transfer (UTET) is used to wirelessly energize low-power miniature implanted devices. Whenever backward data transfer from the implant is of interest, load modulation may be utilized. With load modulation, data is sent backward by imposing ultrasonic reflections from the implant-tissue contact surface. This may be achieved by imposing unmatched electrical load over the implanted transducer electrical terminals. In order to sustain sufficient ultrasonic average power harvesting also during backward data transfer, only a small portion of the impinging ultrasonic energy is allowed to reflect backward. Previous work focused primarily on load modulation via ON- OFF keying (OOK). Herein, it is further shown that phase shift keying can be realized by exploiting the phase characteristics of a matched transducer around its vibration resonance. Load amplitude shift keying (ASK) properly combined with load phase shift keying (LPSK) may be applied, for introducing energy-efficient, high-order signaling schemes, thus improving utilization of the ultrasonic channel. LPSK is realized by momentary imposing reactive loads across the implanted transducer electrical terminals, according to the bit stream of the data to be sent. In this work, LPSK with various constellations and coding are demonstrated, exploiting the acoustic impedance dependency of the implanted piezoelectric resonator on its electrical loading. To support the theoretical notion, a backward data transfer using two-state phase modulation at a bit rate of 20 kbit/s over an ultrasonic carrier frequency of 250 kHz is demonstrated, using finite-element simulation. In the simulation, an implanted transducer was constructed of a 4-mm-diameter hard lead-zirconate-titanate (PZT) disk (PZT8, unloaded mechanical quality property {Q}_{m} of 1000). The PZT resonator was acoustically matched to the tissue impedance, using a layer of 2.72-mm epoxy filled glue and a 2-mm-thick layer of polyethylene.
doi_str_mv 10.1109/TUFFC.2021.3118722
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580693804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9564067</ieee_id><sourcerecordid>2615511519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-91bf7b7b9a0dbeabf25c904916a0bcdf186fd5a6c38b0c73b7bf4be7895c957d3</originalsourceid><addsrcrecordid>eNpd0U1vEzEQBmALUdFQ-AMgIUu9cNngsde762ObNm1FJJBIzpbtHdMN-5Hau6D8exyS9sDJkueZkccvIR-AzQGY-rLeLJeLOWcc5gKgKjl_RWYgucwqJeVrMmNVJTPBgJ2TtzFuGYM8V_wNORd5wQUv5Ixsr4379ceEmt6Y0dB1MH30GOgyDB29Qdy1e_rQ7VrTj5gM_m4c0tt0Meyb_ifdtGMwcegbR1eDqelVqjTjVGP2_dFEpD8eGz_Sr3jA78iZN23E96fzgmyWt-vFfbb6dvewuFplTkgYMwXWl7a0yrDaorGeS6dYrqAwzLraQ1X4WprCicoyV4pEfW6xTDs7JctaXJDPx7m7MDxNGEfdNdFhm3bAYYqay4oVSlQsT_TyP7odptCn12legJQAElRS_KhcGGIM6PUuNJ0Jew1MH5LQ_5LQhyT0KYnU9Ok0erId1i8tz1-fwMcjaBDxpaxkkbOiFH8BAoeNUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615511519</pqid></control><display><type>article</type><title>Backward Data Transfer From Deeply Implanted Device Employing Ultrasonic Load Amplitude-Phase Shift Keying</title><source>IEEE Electronic Library (IEL)</source><creator>Ozeri, Shaul ; Amrani, Ofer</creator><creatorcontrib>Ozeri, Shaul ; Amrani, Ofer</creatorcontrib><description>Ultrasonic transcutaneous energy transfer (UTET) is used to wirelessly energize low-power miniature implanted devices. Whenever backward data transfer from the implant is of interest, load modulation may be utilized. With load modulation, data is sent backward by imposing ultrasonic reflections from the implant-tissue contact surface. This may be achieved by imposing unmatched electrical load over the implanted transducer electrical terminals. In order to sustain sufficient ultrasonic average power harvesting also during backward data transfer, only a small portion of the impinging ultrasonic energy is allowed to reflect backward. Previous work focused primarily on load modulation via ON- OFF keying (OOK). Herein, it is further shown that phase shift keying can be realized by exploiting the phase characteristics of a matched transducer around its vibration resonance. Load amplitude shift keying (ASK) properly combined with load phase shift keying (LPSK) may be applied, for introducing energy-efficient, high-order signaling schemes, thus improving utilization of the ultrasonic channel. LPSK is realized by momentary imposing reactive loads across the implanted transducer electrical terminals, according to the bit stream of the data to be sent. In this work, LPSK with various constellations and coding are demonstrated, exploiting the acoustic impedance dependency of the implanted piezoelectric resonator on its electrical loading. To support the theoretical notion, a backward data transfer using two-state phase modulation at a bit rate of 20 kbit/s over an ultrasonic carrier frequency of 250 kHz is demonstrated, using finite-element simulation. In the simulation, an implanted transducer was constructed of a 4-mm-diameter hard lead-zirconate-titanate (PZT) disk (PZT8, unloaded mechanical quality property &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{Q}_{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; of 1000). The PZT resonator was acoustically matched to the tissue impedance, using a layer of 2.72-mm epoxy filled glue and a 2-mm-thick layer of polyethylene.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2021.3118722</identifier><identifier>PMID: 34623265</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic impedance ; Acoustic properties ; Acoustics ; Amplitudes ; Backward data transmission ; Carrier frequencies ; Computer Simulation ; Constellations ; Data transfer ; Data transfer (computers) ; Electric contacts ; Electrical loads ; Electronic devices ; Energy harvesting ; Energy Transfer ; Finite element method ; Impedance ; Impedance matching ; impedance modulation ; implant power ; Implants ; Lead zirconate titanates ; load phase shift keying (LPSK) ; Modulation ; Phase matching ; Phase modulation ; Phase shift keying ; Piezoelectricity ; Polyethylenes ; Power management ; Prostheses and Implants ; Resonators ; Terminals ; Transducers ; ultrasonic transcutaneous energy transfer (UTET) ; Ultrasonics ; Vibrations</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-01, Vol.69 (1), p.199-207</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-91bf7b7b9a0dbeabf25c904916a0bcdf186fd5a6c38b0c73b7bf4be7895c957d3</citedby><cites>FETCH-LOGICAL-c351t-91bf7b7b9a0dbeabf25c904916a0bcdf186fd5a6c38b0c73b7bf4be7895c957d3</cites><orcidid>0000-0003-3144-8994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9564067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9564067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34623265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozeri, Shaul</creatorcontrib><creatorcontrib>Amrani, Ofer</creatorcontrib><title>Backward Data Transfer From Deeply Implanted Device Employing Ultrasonic Load Amplitude-Phase Shift Keying</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Ultrasonic transcutaneous energy transfer (UTET) is used to wirelessly energize low-power miniature implanted devices. Whenever backward data transfer from the implant is of interest, load modulation may be utilized. With load modulation, data is sent backward by imposing ultrasonic reflections from the implant-tissue contact surface. This may be achieved by imposing unmatched electrical load over the implanted transducer electrical terminals. In order to sustain sufficient ultrasonic average power harvesting also during backward data transfer, only a small portion of the impinging ultrasonic energy is allowed to reflect backward. Previous work focused primarily on load modulation via ON- OFF keying (OOK). Herein, it is further shown that phase shift keying can be realized by exploiting the phase characteristics of a matched transducer around its vibration resonance. Load amplitude shift keying (ASK) properly combined with load phase shift keying (LPSK) may be applied, for introducing energy-efficient, high-order signaling schemes, thus improving utilization of the ultrasonic channel. LPSK is realized by momentary imposing reactive loads across the implanted transducer electrical terminals, according to the bit stream of the data to be sent. In this work, LPSK with various constellations and coding are demonstrated, exploiting the acoustic impedance dependency of the implanted piezoelectric resonator on its electrical loading. To support the theoretical notion, a backward data transfer using two-state phase modulation at a bit rate of 20 kbit/s over an ultrasonic carrier frequency of 250 kHz is demonstrated, using finite-element simulation. In the simulation, an implanted transducer was constructed of a 4-mm-diameter hard lead-zirconate-titanate (PZT) disk (PZT8, unloaded mechanical quality property &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{Q}_{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; of 1000). The PZT resonator was acoustically matched to the tissue impedance, using a layer of 2.72-mm epoxy filled glue and a 2-mm-thick layer of polyethylene.</description><subject>Acoustic impedance</subject><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Amplitudes</subject><subject>Backward data transmission</subject><subject>Carrier frequencies</subject><subject>Computer Simulation</subject><subject>Constellations</subject><subject>Data transfer</subject><subject>Data transfer (computers)</subject><subject>Electric contacts</subject><subject>Electrical loads</subject><subject>Electronic devices</subject><subject>Energy harvesting</subject><subject>Energy Transfer</subject><subject>Finite element method</subject><subject>Impedance</subject><subject>Impedance matching</subject><subject>impedance modulation</subject><subject>implant power</subject><subject>Implants</subject><subject>Lead zirconate titanates</subject><subject>load phase shift keying (LPSK)</subject><subject>Modulation</subject><subject>Phase matching</subject><subject>Phase modulation</subject><subject>Phase shift keying</subject><subject>Piezoelectricity</subject><subject>Polyethylenes</subject><subject>Power management</subject><subject>Prostheses and Implants</subject><subject>Resonators</subject><subject>Terminals</subject><subject>Transducers</subject><subject>ultrasonic transcutaneous energy transfer (UTET)</subject><subject>Ultrasonics</subject><subject>Vibrations</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpd0U1vEzEQBmALUdFQ-AMgIUu9cNngsde762ObNm1FJJBIzpbtHdMN-5Hau6D8exyS9sDJkueZkccvIR-AzQGY-rLeLJeLOWcc5gKgKjl_RWYgucwqJeVrMmNVJTPBgJ2TtzFuGYM8V_wNORd5wQUv5Ixsr4379ceEmt6Y0dB1MH30GOgyDB29Qdy1e_rQ7VrTj5gM_m4c0tt0Meyb_ifdtGMwcegbR1eDqelVqjTjVGP2_dFEpD8eGz_Sr3jA78iZN23E96fzgmyWt-vFfbb6dvewuFplTkgYMwXWl7a0yrDaorGeS6dYrqAwzLraQ1X4WprCicoyV4pEfW6xTDs7JctaXJDPx7m7MDxNGEfdNdFhm3bAYYqay4oVSlQsT_TyP7odptCn12legJQAElRS_KhcGGIM6PUuNJ0Jew1MH5LQ_5LQhyT0KYnU9Ok0erId1i8tz1-fwMcjaBDxpaxkkbOiFH8BAoeNUQ</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Ozeri, Shaul</creator><creator>Amrani, Ofer</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3144-8994</orcidid></search><sort><creationdate>202201</creationdate><title>Backward Data Transfer From Deeply Implanted Device Employing Ultrasonic Load Amplitude-Phase Shift Keying</title><author>Ozeri, Shaul ; Amrani, Ofer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-91bf7b7b9a0dbeabf25c904916a0bcdf186fd5a6c38b0c73b7bf4be7895c957d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic impedance</topic><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Amplitudes</topic><topic>Backward data transmission</topic><topic>Carrier frequencies</topic><topic>Computer Simulation</topic><topic>Constellations</topic><topic>Data transfer</topic><topic>Data transfer (computers)</topic><topic>Electric contacts</topic><topic>Electrical loads</topic><topic>Electronic devices</topic><topic>Energy harvesting</topic><topic>Energy Transfer</topic><topic>Finite element method</topic><topic>Impedance</topic><topic>Impedance matching</topic><topic>impedance modulation</topic><topic>implant power</topic><topic>Implants</topic><topic>Lead zirconate titanates</topic><topic>load phase shift keying (LPSK)</topic><topic>Modulation</topic><topic>Phase matching</topic><topic>Phase modulation</topic><topic>Phase shift keying</topic><topic>Piezoelectricity</topic><topic>Polyethylenes</topic><topic>Power management</topic><topic>Prostheses and Implants</topic><topic>Resonators</topic><topic>Terminals</topic><topic>Transducers</topic><topic>ultrasonic transcutaneous energy transfer (UTET)</topic><topic>Ultrasonics</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozeri, Shaul</creatorcontrib><creatorcontrib>Amrani, Ofer</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozeri, Shaul</au><au>Amrani, Ofer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backward Data Transfer From Deeply Implanted Device Employing Ultrasonic Load Amplitude-Phase Shift Keying</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2022-01</date><risdate>2022</risdate><volume>69</volume><issue>1</issue><spage>199</spage><epage>207</epage><pages>199-207</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Ultrasonic transcutaneous energy transfer (UTET) is used to wirelessly energize low-power miniature implanted devices. Whenever backward data transfer from the implant is of interest, load modulation may be utilized. With load modulation, data is sent backward by imposing ultrasonic reflections from the implant-tissue contact surface. This may be achieved by imposing unmatched electrical load over the implanted transducer electrical terminals. In order to sustain sufficient ultrasonic average power harvesting also during backward data transfer, only a small portion of the impinging ultrasonic energy is allowed to reflect backward. Previous work focused primarily on load modulation via ON- OFF keying (OOK). Herein, it is further shown that phase shift keying can be realized by exploiting the phase characteristics of a matched transducer around its vibration resonance. Load amplitude shift keying (ASK) properly combined with load phase shift keying (LPSK) may be applied, for introducing energy-efficient, high-order signaling schemes, thus improving utilization of the ultrasonic channel. LPSK is realized by momentary imposing reactive loads across the implanted transducer electrical terminals, according to the bit stream of the data to be sent. In this work, LPSK with various constellations and coding are demonstrated, exploiting the acoustic impedance dependency of the implanted piezoelectric resonator on its electrical loading. To support the theoretical notion, a backward data transfer using two-state phase modulation at a bit rate of 20 kbit/s over an ultrasonic carrier frequency of 250 kHz is demonstrated, using finite-element simulation. In the simulation, an implanted transducer was constructed of a 4-mm-diameter hard lead-zirconate-titanate (PZT) disk (PZT8, unloaded mechanical quality property &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{Q}_{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; of 1000). The PZT resonator was acoustically matched to the tissue impedance, using a layer of 2.72-mm epoxy filled glue and a 2-mm-thick layer of polyethylene.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34623265</pmid><doi>10.1109/TUFFC.2021.3118722</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3144-8994</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-01, Vol.69 (1), p.199-207
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_2580693804
source IEEE Electronic Library (IEL)
subjects Acoustic impedance
Acoustic properties
Acoustics
Amplitudes
Backward data transmission
Carrier frequencies
Computer Simulation
Constellations
Data transfer
Data transfer (computers)
Electric contacts
Electrical loads
Electronic devices
Energy harvesting
Energy Transfer
Finite element method
Impedance
Impedance matching
impedance modulation
implant power
Implants
Lead zirconate titanates
load phase shift keying (LPSK)
Modulation
Phase matching
Phase modulation
Phase shift keying
Piezoelectricity
Polyethylenes
Power management
Prostheses and Implants
Resonators
Terminals
Transducers
ultrasonic transcutaneous energy transfer (UTET)
Ultrasonics
Vibrations
title Backward Data Transfer From Deeply Implanted Device Employing Ultrasonic Load Amplitude-Phase Shift Keying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backward%20Data%20Transfer%20From%20Deeply%20Implanted%20Device%20Employing%20Ultrasonic%20Load%20Amplitude-Phase%20Shift%20Keying&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Ozeri,%20Shaul&rft.date=2022-01&rft.volume=69&rft.issue=1&rft.spage=199&rft.epage=207&rft.pages=199-207&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2021.3118722&rft_dat=%3Cproquest_RIE%3E2615511519%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615511519&rft_id=info:pmid/34623265&rft_ieee_id=9564067&rfr_iscdi=true