Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs

Lipid nanoparticles (LNPs) for the efficient delivery of drugs need to be designed for the particular administration route and type of drug. Here we report the design of LNPs for the efficient delivery of therapeutic RNAs to the lung via nebulization. We optimized the composition, molar ratios and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2021-09, Vol.5 (9), p.1059-1068
Hauptverfasser: Lokugamage, Melissa P., Vanover, Daryll, Beyersdorf, Jared, Hatit, Marine Z. C., Rotolo, Laura, Echeverri, Elisa Schrader, Peck, Hannah E., Ni, Huanzhen, Yoon, Jeong-Kee, Kim, YongTae, Santangelo, Philip J., Dahlman, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1068
container_issue 9
container_start_page 1059
container_title Nature biomedical engineering
container_volume 5
creator Lokugamage, Melissa P.
Vanover, Daryll
Beyersdorf, Jared
Hatit, Marine Z. C.
Rotolo, Laura
Echeverri, Elisa Schrader
Peck, Hannah E.
Ni, Huanzhen
Yoon, Jeong-Kee
Kim, YongTae
Santangelo, Philip J.
Dahlman, James E.
description Lipid nanoparticles (LNPs) for the efficient delivery of drugs need to be designed for the particular administration route and type of drug. Here we report the design of LNPs for the efficient delivery of therapeutic RNAs to the lung via nebulization. We optimized the composition, molar ratios and structure of LNPs made of lipids, neutral or cationic helper lipids and poly(ethylene glycol) (PEG) by evaluating the performance of LNPs belonging to six clusters occupying extremes in chemical space, and then pooling the lead clusters and expanding their diversity. We found that a low (high) molar ratio of PEG improves the performance of LNPs with neutral (cationic) helper lipids, an identified and optimal LNP for low-dose messenger RNA delivery. Nebulized delivery of an mRNA encoding a broadly neutralizing antibody targeting haemagglutinin via the optimized LNP protected mice from a lethal challenge of the H1N1 subtype of influenza A virus, and delivered mRNA more efficiently than LNPs previously optimized for systemic delivery. A cluster approach to LNP design may facilitate the optimization of LNPs for other administration routes and therapeutics. Lipid nanoparticles can be optimized for the efficient delivery of therapeutic mRNAs to the lung via nebulization, as shown for the delivery of a therapeutic antibody in mice challenged with a lethal dose of the H1N1 influenza A virus.
doi_str_mv 10.1038/s41551-021-00786-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580026086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580026086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-5fcc4fe48eb02d2ff3a291cfac8532ea36149b5176e71aacb67b85e0d64088433</originalsourceid><addsrcrecordid>eNp9kUtL7jAQhoMoKuofcHEouHFTzb3pUuR4AVEQBXchTScaaZuatKL-evP5qUfOwkWYwDzzJMyL0C7BBwQzdZg4EYKUmOaDKyXLlxW0SYmoSsXl3eqP-wbaSekRY0xqxutKrKMNxiWRmMtNpK_Gyff-zUw-DEVwRedH3xaDGcJo4uRtB6lwIRbTAxQtdP4Z4uuCG6CZO_8G7aITzQhzhov--vKomMIH3c3DfdpGa850CXY-6xa6Pfl7c3xWXlydnh8fXZSWKzGVwlnLHXAFDaYtdY4ZWhPrjFWCUTBMEl43glQSKmKMbWTVKAG4lRwrxRnbQvtL7xjD0wxp0r1PFrrODBDmpKlQGFOJlczo3n_oY5jjkH-XqarmWYkXQrqkbAwpRXB6jL438VUTrBcJ6GUCOiegPxLQL3noz6d6bnpov0e-9p0BtgRSbg33EP-9_Yv2HSjKkhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579464003</pqid></control><display><type>article</type><title>Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Lokugamage, Melissa P. ; Vanover, Daryll ; Beyersdorf, Jared ; Hatit, Marine Z. C. ; Rotolo, Laura ; Echeverri, Elisa Schrader ; Peck, Hannah E. ; Ni, Huanzhen ; Yoon, Jeong-Kee ; Kim, YongTae ; Santangelo, Philip J. ; Dahlman, James E.</creator><creatorcontrib>Lokugamage, Melissa P. ; Vanover, Daryll ; Beyersdorf, Jared ; Hatit, Marine Z. C. ; Rotolo, Laura ; Echeverri, Elisa Schrader ; Peck, Hannah E. ; Ni, Huanzhen ; Yoon, Jeong-Kee ; Kim, YongTae ; Santangelo, Philip J. ; Dahlman, James E.</creatorcontrib><description>Lipid nanoparticles (LNPs) for the efficient delivery of drugs need to be designed for the particular administration route and type of drug. Here we report the design of LNPs for the efficient delivery of therapeutic RNAs to the lung via nebulization. We optimized the composition, molar ratios and structure of LNPs made of lipids, neutral or cationic helper lipids and poly(ethylene glycol) (PEG) by evaluating the performance of LNPs belonging to six clusters occupying extremes in chemical space, and then pooling the lead clusters and expanding their diversity. We found that a low (high) molar ratio of PEG improves the performance of LNPs with neutral (cationic) helper lipids, an identified and optimal LNP for low-dose messenger RNA delivery. Nebulized delivery of an mRNA encoding a broadly neutralizing antibody targeting haemagglutinin via the optimized LNP protected mice from a lethal challenge of the H1N1 subtype of influenza A virus, and delivered mRNA more efficiently than LNPs previously optimized for systemic delivery. A cluster approach to LNP design may facilitate the optimization of LNPs for other administration routes and therapeutics. Lipid nanoparticles can be optimized for the efficient delivery of therapeutic mRNAs to the lung via nebulization, as shown for the delivery of a therapeutic antibody in mice challenged with a lethal dose of the H1N1 influenza A virus.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-021-00786-x</identifier><identifier>PMID: 34616046</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/62 ; 42/47 ; 45/47 ; 45/77 ; 639/166/898 ; 639/166/985 ; 64/60 ; Animals ; Antibodies ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Cations ; Chemical compounds ; Clusters ; Design optimization ; Drug delivery ; Drug development ; Hemagglutinins ; Influenza ; Influenza A ; Influenza A Virus, H1N1 Subtype ; Lethal dose ; Lipids ; Liposomes ; Lung ; Lungs ; Mice ; mRNA ; Nanoparticles ; Performance enhancement ; Performance evaluation ; Pharmaceuticals ; Polyethylene glycol ; RNA, Messenger ; RNA, Small Interfering ; Swine flu ; Viruses</subject><ispartof>Nature biomedical engineering, 2021-09, Vol.5 (9), p.1059-1068</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Sep 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-5fcc4fe48eb02d2ff3a291cfac8532ea36149b5176e71aacb67b85e0d64088433</citedby><cites>FETCH-LOGICAL-c485t-5fcc4fe48eb02d2ff3a291cfac8532ea36149b5176e71aacb67b85e0d64088433</cites><orcidid>0000-0001-7352-0339 ; 0000-0002-8835-8247 ; 0000-0001-7580-436X ; 0000-0002-5713-6596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-021-00786-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-021-00786-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34616046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lokugamage, Melissa P.</creatorcontrib><creatorcontrib>Vanover, Daryll</creatorcontrib><creatorcontrib>Beyersdorf, Jared</creatorcontrib><creatorcontrib>Hatit, Marine Z. C.</creatorcontrib><creatorcontrib>Rotolo, Laura</creatorcontrib><creatorcontrib>Echeverri, Elisa Schrader</creatorcontrib><creatorcontrib>Peck, Hannah E.</creatorcontrib><creatorcontrib>Ni, Huanzhen</creatorcontrib><creatorcontrib>Yoon, Jeong-Kee</creatorcontrib><creatorcontrib>Kim, YongTae</creatorcontrib><creatorcontrib>Santangelo, Philip J.</creatorcontrib><creatorcontrib>Dahlman, James E.</creatorcontrib><title>Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>Lipid nanoparticles (LNPs) for the efficient delivery of drugs need to be designed for the particular administration route and type of drug. Here we report the design of LNPs for the efficient delivery of therapeutic RNAs to the lung via nebulization. We optimized the composition, molar ratios and structure of LNPs made of lipids, neutral or cationic helper lipids and poly(ethylene glycol) (PEG) by evaluating the performance of LNPs belonging to six clusters occupying extremes in chemical space, and then pooling the lead clusters and expanding their diversity. We found that a low (high) molar ratio of PEG improves the performance of LNPs with neutral (cationic) helper lipids, an identified and optimal LNP for low-dose messenger RNA delivery. Nebulized delivery of an mRNA encoding a broadly neutralizing antibody targeting haemagglutinin via the optimized LNP protected mice from a lethal challenge of the H1N1 subtype of influenza A virus, and delivered mRNA more efficiently than LNPs previously optimized for systemic delivery. A cluster approach to LNP design may facilitate the optimization of LNPs for other administration routes and therapeutics. Lipid nanoparticles can be optimized for the efficient delivery of therapeutic mRNAs to the lung via nebulization, as shown for the delivery of a therapeutic antibody in mice challenged with a lethal dose of the H1N1 influenza A virus.</description><subject>101/62</subject><subject>42/47</subject><subject>45/47</subject><subject>45/77</subject><subject>639/166/898</subject><subject>639/166/985</subject><subject>64/60</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Cations</subject><subject>Chemical compounds</subject><subject>Clusters</subject><subject>Design optimization</subject><subject>Drug delivery</subject><subject>Drug development</subject><subject>Hemagglutinins</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Influenza A Virus, H1N1 Subtype</subject><subject>Lethal dose</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Lung</subject><subject>Lungs</subject><subject>Mice</subject><subject>mRNA</subject><subject>Nanoparticles</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Pharmaceuticals</subject><subject>Polyethylene glycol</subject><subject>RNA, Messenger</subject><subject>RNA, Small Interfering</subject><subject>Swine flu</subject><subject>Viruses</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtL7jAQhoMoKuofcHEouHFTzb3pUuR4AVEQBXchTScaaZuatKL-evP5qUfOwkWYwDzzJMyL0C7BBwQzdZg4EYKUmOaDKyXLlxW0SYmoSsXl3eqP-wbaSekRY0xqxutKrKMNxiWRmMtNpK_Gyff-zUw-DEVwRedH3xaDGcJo4uRtB6lwIRbTAxQtdP4Z4uuCG6CZO_8G7aITzQhzhov--vKomMIH3c3DfdpGa850CXY-6xa6Pfl7c3xWXlydnh8fXZSWKzGVwlnLHXAFDaYtdY4ZWhPrjFWCUTBMEl43glQSKmKMbWTVKAG4lRwrxRnbQvtL7xjD0wxp0r1PFrrODBDmpKlQGFOJlczo3n_oY5jjkH-XqarmWYkXQrqkbAwpRXB6jL438VUTrBcJ6GUCOiegPxLQL3noz6d6bnpov0e-9p0BtgRSbg33EP-9_Yv2HSjKkhw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lokugamage, Melissa P.</creator><creator>Vanover, Daryll</creator><creator>Beyersdorf, Jared</creator><creator>Hatit, Marine Z. C.</creator><creator>Rotolo, Laura</creator><creator>Echeverri, Elisa Schrader</creator><creator>Peck, Hannah E.</creator><creator>Ni, Huanzhen</creator><creator>Yoon, Jeong-Kee</creator><creator>Kim, YongTae</creator><creator>Santangelo, Philip J.</creator><creator>Dahlman, James E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7352-0339</orcidid><orcidid>https://orcid.org/0000-0002-8835-8247</orcidid><orcidid>https://orcid.org/0000-0001-7580-436X</orcidid><orcidid>https://orcid.org/0000-0002-5713-6596</orcidid></search><sort><creationdate>20210901</creationdate><title>Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs</title><author>Lokugamage, Melissa P. ; Vanover, Daryll ; Beyersdorf, Jared ; Hatit, Marine Z. C. ; Rotolo, Laura ; Echeverri, Elisa Schrader ; Peck, Hannah E. ; Ni, Huanzhen ; Yoon, Jeong-Kee ; Kim, YongTae ; Santangelo, Philip J. ; Dahlman, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-5fcc4fe48eb02d2ff3a291cfac8532ea36149b5176e71aacb67b85e0d64088433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/62</topic><topic>42/47</topic><topic>45/47</topic><topic>45/77</topic><topic>639/166/898</topic><topic>639/166/985</topic><topic>64/60</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Cations</topic><topic>Chemical compounds</topic><topic>Clusters</topic><topic>Design optimization</topic><topic>Drug delivery</topic><topic>Drug development</topic><topic>Hemagglutinins</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Influenza A Virus, H1N1 Subtype</topic><topic>Lethal dose</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Lung</topic><topic>Lungs</topic><topic>Mice</topic><topic>mRNA</topic><topic>Nanoparticles</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Pharmaceuticals</topic><topic>Polyethylene glycol</topic><topic>RNA, Messenger</topic><topic>RNA, Small Interfering</topic><topic>Swine flu</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lokugamage, Melissa P.</creatorcontrib><creatorcontrib>Vanover, Daryll</creatorcontrib><creatorcontrib>Beyersdorf, Jared</creatorcontrib><creatorcontrib>Hatit, Marine Z. C.</creatorcontrib><creatorcontrib>Rotolo, Laura</creatorcontrib><creatorcontrib>Echeverri, Elisa Schrader</creatorcontrib><creatorcontrib>Peck, Hannah E.</creatorcontrib><creatorcontrib>Ni, Huanzhen</creatorcontrib><creatorcontrib>Yoon, Jeong-Kee</creatorcontrib><creatorcontrib>Kim, YongTae</creatorcontrib><creatorcontrib>Santangelo, Philip J.</creatorcontrib><creatorcontrib>Dahlman, James E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lokugamage, Melissa P.</au><au>Vanover, Daryll</au><au>Beyersdorf, Jared</au><au>Hatit, Marine Z. C.</au><au>Rotolo, Laura</au><au>Echeverri, Elisa Schrader</au><au>Peck, Hannah E.</au><au>Ni, Huanzhen</au><au>Yoon, Jeong-Kee</au><au>Kim, YongTae</au><au>Santangelo, Philip J.</au><au>Dahlman, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>5</volume><issue>9</issue><spage>1059</spage><epage>1068</epage><pages>1059-1068</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>Lipid nanoparticles (LNPs) for the efficient delivery of drugs need to be designed for the particular administration route and type of drug. Here we report the design of LNPs for the efficient delivery of therapeutic RNAs to the lung via nebulization. We optimized the composition, molar ratios and structure of LNPs made of lipids, neutral or cationic helper lipids and poly(ethylene glycol) (PEG) by evaluating the performance of LNPs belonging to six clusters occupying extremes in chemical space, and then pooling the lead clusters and expanding their diversity. We found that a low (high) molar ratio of PEG improves the performance of LNPs with neutral (cationic) helper lipids, an identified and optimal LNP for low-dose messenger RNA delivery. Nebulized delivery of an mRNA encoding a broadly neutralizing antibody targeting haemagglutinin via the optimized LNP protected mice from a lethal challenge of the H1N1 subtype of influenza A virus, and delivered mRNA more efficiently than LNPs previously optimized for systemic delivery. A cluster approach to LNP design may facilitate the optimization of LNPs for other administration routes and therapeutics. Lipid nanoparticles can be optimized for the efficient delivery of therapeutic mRNAs to the lung via nebulization, as shown for the delivery of a therapeutic antibody in mice challenged with a lethal dose of the H1N1 influenza A virus.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34616046</pmid><doi>10.1038/s41551-021-00786-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7352-0339</orcidid><orcidid>https://orcid.org/0000-0002-8835-8247</orcidid><orcidid>https://orcid.org/0000-0001-7580-436X</orcidid><orcidid>https://orcid.org/0000-0002-5713-6596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2157-846X
ispartof Nature biomedical engineering, 2021-09, Vol.5 (9), p.1059-1068
issn 2157-846X
2157-846X
language eng
recordid cdi_proquest_miscellaneous_2580026086
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 101/62
42/47
45/47
45/77
639/166/898
639/166/985
64/60
Animals
Antibodies
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Cations
Chemical compounds
Clusters
Design optimization
Drug delivery
Drug development
Hemagglutinins
Influenza
Influenza A
Influenza A Virus, H1N1 Subtype
Lethal dose
Lipids
Liposomes
Lung
Lungs
Mice
mRNA
Nanoparticles
Performance enhancement
Performance evaluation
Pharmaceuticals
Polyethylene glycol
RNA, Messenger
RNA, Small Interfering
Swine flu
Viruses
title Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20lipid%20nanoparticles%20for%20the%20delivery%20of%20nebulized%20therapeutic%20mRNA%20to%20the%20lungs&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Lokugamage,%20Melissa%20P.&rft.date=2021-09-01&rft.volume=5&rft.issue=9&rft.spage=1059&rft.epage=1068&rft.pages=1059-1068&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-021-00786-x&rft_dat=%3Cproquest_cross%3E2580026086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579464003&rft_id=info:pmid/34616046&rfr_iscdi=true