Gas‐Phase Fluorination of Hexagonal Boron Nitride

Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, makin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-12, Vol.33 (52), p.e2106084-n/a
Hauptverfasser: Meiyazhagan, AshokKumar, Serles, Peter, Salpekar, Devashish, Oliveira, Eliezer Fernando, Alemany, Lawrence B., Fu, Riqiang, Gao, Guanhui, Arif, Taib, Vajtai, Robert, Swaminathan, Venkataraman, Galvao, Douglas S., Khabashesku, Valery N., Filleter, Tobin, Ajayan, Pulickel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page e2106084
container_title Advanced materials (Weinheim)
container_volume 33
creator Meiyazhagan, AshokKumar
Serles, Peter
Salpekar, Devashish
Oliveira, Eliezer Fernando
Alemany, Lawrence B.
Fu, Riqiang
Gao, Guanhui
Arif, Taib
Vajtai, Robert
Swaminathan, Venkataraman
Galvao, Douglas S.
Khabashesku, Valery N.
Filleter, Tobin
Ajayan, Pulickel M.
description Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas‐phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter‐planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in‐plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices. A simple, scalable strategy is attempted using a direct gas‐phase fluorination technique to fluorinate hexagonal boron nitride (hBN). The nature of fluorine bonding to the hBN lattice and their chemical coordination are evaluated using various analytical techniques and theoretical models. Interestingly, the derived F‐hBN displays significant improvement in its thermal and friction properties and displays a semiconducting behavior.
doi_str_mv 10.1002/adma.202106084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580024599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580024599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-f1503b740a6b74bf470f162879508d76a83f8dbbce7649fafeb2ea5dfb279d4f3</originalsourceid><addsrcrecordid>eNqFkMtOAjEUQBujEUS3Lg2JGzeDt4_pY4koYOJroetJZ6bVIQPFlomy8xP8Rr_EEhATN256k-bck5uD0DGGHgYg57qc6h4BgoGDZDuojVOCEwYq3UVtUDRNFGeyhQ5CmACA4sD3UYsyjgWltI3oSIevj8-HFx1Md1g3zlczvajcrOtsd2ze9bOb6bp74Xz8uqsWvirNIdqzug7maDM76Gl49TgYJzf3o-tB_yYpqKAssTgFmgsGmsc3t0yAxZxIoVKQpeBaUivLPC-M4ExZbU1OjE5LmxOhSmZpB52tvXPvXhsTFtm0CoWpaz0zrgkZSWVMwFKlInr6B524xsfLI8UxI1hKQSLVW1OFdyF4Y7O5r6baLzMM2SpntsqZbXPGhZONtsmnptziP_0ioNbAW1Wb5T-6rH952_-VfwOb2YBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614218872</pqid></control><display><type>article</type><title>Gas‐Phase Fluorination of Hexagonal Boron Nitride</title><source>Wiley Online Library All Journals</source><creator>Meiyazhagan, AshokKumar ; Serles, Peter ; Salpekar, Devashish ; Oliveira, Eliezer Fernando ; Alemany, Lawrence B. ; Fu, Riqiang ; Gao, Guanhui ; Arif, Taib ; Vajtai, Robert ; Swaminathan, Venkataraman ; Galvao, Douglas S. ; Khabashesku, Valery N. ; Filleter, Tobin ; Ajayan, Pulickel M.</creator><creatorcontrib>Meiyazhagan, AshokKumar ; Serles, Peter ; Salpekar, Devashish ; Oliveira, Eliezer Fernando ; Alemany, Lawrence B. ; Fu, Riqiang ; Gao, Guanhui ; Arif, Taib ; Vajtai, Robert ; Swaminathan, Venkataraman ; Galvao, Douglas S. ; Khabashesku, Valery N. ; Filleter, Tobin ; Ajayan, Pulickel M.</creatorcontrib><description>Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas‐phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter‐planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in‐plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices. A simple, scalable strategy is attempted using a direct gas‐phase fluorination technique to fluorinate hexagonal boron nitride (hBN). The nature of fluorine bonding to the hBN lattice and their chemical coordination are evaluated using various analytical techniques and theoretical models. Interestingly, the derived F‐hBN displays significant improvement in its thermal and friction properties and displays a semiconducting behavior.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202106084</identifier><identifier>PMID: 34617333</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; bandgap ; Boron nitride ; Electronic devices ; Fluorination ; Fluorine ; friction ; functionalization ; Hexagonal lattice ; Lubricants ; Materials science ; semiconducting</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2106084-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-f1503b740a6b74bf470f162879508d76a83f8dbbce7649fafeb2ea5dfb279d4f3</citedby><cites>FETCH-LOGICAL-c3734-f1503b740a6b74bf470f162879508d76a83f8dbbce7649fafeb2ea5dfb279d4f3</cites><orcidid>0000-0002-9765-4347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202106084$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202106084$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34617333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meiyazhagan, AshokKumar</creatorcontrib><creatorcontrib>Serles, Peter</creatorcontrib><creatorcontrib>Salpekar, Devashish</creatorcontrib><creatorcontrib>Oliveira, Eliezer Fernando</creatorcontrib><creatorcontrib>Alemany, Lawrence B.</creatorcontrib><creatorcontrib>Fu, Riqiang</creatorcontrib><creatorcontrib>Gao, Guanhui</creatorcontrib><creatorcontrib>Arif, Taib</creatorcontrib><creatorcontrib>Vajtai, Robert</creatorcontrib><creatorcontrib>Swaminathan, Venkataraman</creatorcontrib><creatorcontrib>Galvao, Douglas S.</creatorcontrib><creatorcontrib>Khabashesku, Valery N.</creatorcontrib><creatorcontrib>Filleter, Tobin</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><title>Gas‐Phase Fluorination of Hexagonal Boron Nitride</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas‐phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter‐planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in‐plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices. A simple, scalable strategy is attempted using a direct gas‐phase fluorination technique to fluorinate hexagonal boron nitride (hBN). The nature of fluorine bonding to the hBN lattice and their chemical coordination are evaluated using various analytical techniques and theoretical models. Interestingly, the derived F‐hBN displays significant improvement in its thermal and friction properties and displays a semiconducting behavior.</description><subject>2D materials</subject><subject>bandgap</subject><subject>Boron nitride</subject><subject>Electronic devices</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>friction</subject><subject>functionalization</subject><subject>Hexagonal lattice</subject><subject>Lubricants</subject><subject>Materials science</subject><subject>semiconducting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOAjEUQBujEUS3Lg2JGzeDt4_pY4koYOJroetJZ6bVIQPFlomy8xP8Rr_EEhATN256k-bck5uD0DGGHgYg57qc6h4BgoGDZDuojVOCEwYq3UVtUDRNFGeyhQ5CmACA4sD3UYsyjgWltI3oSIevj8-HFx1Md1g3zlczvajcrOtsd2ze9bOb6bp74Xz8uqsWvirNIdqzug7maDM76Gl49TgYJzf3o-tB_yYpqKAssTgFmgsGmsc3t0yAxZxIoVKQpeBaUivLPC-M4ExZbU1OjE5LmxOhSmZpB52tvXPvXhsTFtm0CoWpaz0zrgkZSWVMwFKlInr6B524xsfLI8UxI1hKQSLVW1OFdyF4Y7O5r6baLzMM2SpntsqZbXPGhZONtsmnptziP_0ioNbAW1Wb5T-6rH952_-VfwOb2YBE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Meiyazhagan, AshokKumar</creator><creator>Serles, Peter</creator><creator>Salpekar, Devashish</creator><creator>Oliveira, Eliezer Fernando</creator><creator>Alemany, Lawrence B.</creator><creator>Fu, Riqiang</creator><creator>Gao, Guanhui</creator><creator>Arif, Taib</creator><creator>Vajtai, Robert</creator><creator>Swaminathan, Venkataraman</creator><creator>Galvao, Douglas S.</creator><creator>Khabashesku, Valery N.</creator><creator>Filleter, Tobin</creator><creator>Ajayan, Pulickel M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9765-4347</orcidid></search><sort><creationdate>20211201</creationdate><title>Gas‐Phase Fluorination of Hexagonal Boron Nitride</title><author>Meiyazhagan, AshokKumar ; Serles, Peter ; Salpekar, Devashish ; Oliveira, Eliezer Fernando ; Alemany, Lawrence B. ; Fu, Riqiang ; Gao, Guanhui ; Arif, Taib ; Vajtai, Robert ; Swaminathan, Venkataraman ; Galvao, Douglas S. ; Khabashesku, Valery N. ; Filleter, Tobin ; Ajayan, Pulickel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-f1503b740a6b74bf470f162879508d76a83f8dbbce7649fafeb2ea5dfb279d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D materials</topic><topic>bandgap</topic><topic>Boron nitride</topic><topic>Electronic devices</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>friction</topic><topic>functionalization</topic><topic>Hexagonal lattice</topic><topic>Lubricants</topic><topic>Materials science</topic><topic>semiconducting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meiyazhagan, AshokKumar</creatorcontrib><creatorcontrib>Serles, Peter</creatorcontrib><creatorcontrib>Salpekar, Devashish</creatorcontrib><creatorcontrib>Oliveira, Eliezer Fernando</creatorcontrib><creatorcontrib>Alemany, Lawrence B.</creatorcontrib><creatorcontrib>Fu, Riqiang</creatorcontrib><creatorcontrib>Gao, Guanhui</creatorcontrib><creatorcontrib>Arif, Taib</creatorcontrib><creatorcontrib>Vajtai, Robert</creatorcontrib><creatorcontrib>Swaminathan, Venkataraman</creatorcontrib><creatorcontrib>Galvao, Douglas S.</creatorcontrib><creatorcontrib>Khabashesku, Valery N.</creatorcontrib><creatorcontrib>Filleter, Tobin</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meiyazhagan, AshokKumar</au><au>Serles, Peter</au><au>Salpekar, Devashish</au><au>Oliveira, Eliezer Fernando</au><au>Alemany, Lawrence B.</au><au>Fu, Riqiang</au><au>Gao, Guanhui</au><au>Arif, Taib</au><au>Vajtai, Robert</au><au>Swaminathan, Venkataraman</au><au>Galvao, Douglas S.</au><au>Khabashesku, Valery N.</au><au>Filleter, Tobin</au><au>Ajayan, Pulickel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas‐Phase Fluorination of Hexagonal Boron Nitride</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>52</issue><spage>e2106084</spage><epage>n/a</epage><pages>e2106084-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas‐phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter‐planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in‐plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices. A simple, scalable strategy is attempted using a direct gas‐phase fluorination technique to fluorinate hexagonal boron nitride (hBN). The nature of fluorine bonding to the hBN lattice and their chemical coordination are evaluated using various analytical techniques and theoretical models. Interestingly, the derived F‐hBN displays significant improvement in its thermal and friction properties and displays a semiconducting behavior.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34617333</pmid><doi>10.1002/adma.202106084</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9765-4347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2106084-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2580024599
source Wiley Online Library All Journals
subjects 2D materials
bandgap
Boron nitride
Electronic devices
Fluorination
Fluorine
friction
functionalization
Hexagonal lattice
Lubricants
Materials science
semiconducting
title Gas‐Phase Fluorination of Hexagonal Boron Nitride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%E2%80%90Phase%20Fluorination%20of%20Hexagonal%20Boron%20Nitride&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Meiyazhagan,%20AshokKumar&rft.date=2021-12-01&rft.volume=33&rft.issue=52&rft.spage=e2106084&rft.epage=n/a&rft.pages=e2106084-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202106084&rft_dat=%3Cproquest_cross%3E2580024599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614218872&rft_id=info:pmid/34617333&rfr_iscdi=true