Gas‐Phase Fluorination of Hexagonal Boron Nitride
Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, makin...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-12, Vol.33 (52), p.e2106084-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | e2106084 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Meiyazhagan, AshokKumar Serles, Peter Salpekar, Devashish Oliveira, Eliezer Fernando Alemany, Lawrence B. Fu, Riqiang Gao, Guanhui Arif, Taib Vajtai, Robert Swaminathan, Venkataraman Galvao, Douglas S. Khabashesku, Valery N. Filleter, Tobin Ajayan, Pulickel M. |
description | Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas‐phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter‐planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in‐plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices.
A simple, scalable strategy is attempted using a direct gas‐phase fluorination technique to fluorinate hexagonal boron nitride (hBN). The nature of fluorine bonding to the hBN lattice and their chemical coordination are evaluated using various analytical techniques and theoretical models. Interestingly, the derived F‐hBN displays significant improvement in its thermal and friction properties and displays a semiconducting behavior. |
doi_str_mv | 10.1002/adma.202106084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580024599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580024599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-f1503b740a6b74bf470f162879508d76a83f8dbbce7649fafeb2ea5dfb279d4f3</originalsourceid><addsrcrecordid>eNqFkMtOAjEUQBujEUS3Lg2JGzeDt4_pY4koYOJroetJZ6bVIQPFlomy8xP8Rr_EEhATN256k-bck5uD0DGGHgYg57qc6h4BgoGDZDuojVOCEwYq3UVtUDRNFGeyhQ5CmACA4sD3UYsyjgWltI3oSIevj8-HFx1Md1g3zlczvajcrOtsd2ze9bOb6bp74Xz8uqsWvirNIdqzug7maDM76Gl49TgYJzf3o-tB_yYpqKAssTgFmgsGmsc3t0yAxZxIoVKQpeBaUivLPC-M4ExZbU1OjE5LmxOhSmZpB52tvXPvXhsTFtm0CoWpaz0zrgkZSWVMwFKlInr6B524xsfLI8UxI1hKQSLVW1OFdyF4Y7O5r6baLzMM2SpntsqZbXPGhZONtsmnptziP_0ioNbAW1Wb5T-6rH952_-VfwOb2YBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614218872</pqid></control><display><type>article</type><title>Gas‐Phase Fluorination of Hexagonal Boron Nitride</title><source>Wiley Online Library All Journals</source><creator>Meiyazhagan, AshokKumar ; Serles, Peter ; Salpekar, Devashish ; Oliveira, Eliezer Fernando ; Alemany, Lawrence B. ; Fu, Riqiang ; Gao, Guanhui ; Arif, Taib ; Vajtai, Robert ; Swaminathan, Venkataraman ; Galvao, Douglas S. ; Khabashesku, Valery N. ; Filleter, Tobin ; Ajayan, Pulickel M.</creator><creatorcontrib>Meiyazhagan, AshokKumar ; Serles, Peter ; Salpekar, Devashish ; Oliveira, Eliezer Fernando ; Alemany, Lawrence B. ; Fu, Riqiang ; Gao, Guanhui ; Arif, Taib ; Vajtai, Robert ; Swaminathan, Venkataraman ; Galvao, Douglas S. ; Khabashesku, Valery N. ; Filleter, Tobin ; Ajayan, Pulickel M.</creatorcontrib><description>Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas‐phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter‐planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in‐plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices.
A simple, scalable strategy is attempted using a direct gas‐phase fluorination technique to fluorinate hexagonal boron nitride (hBN). The nature of fluorine bonding to the hBN lattice and their chemical coordination are evaluated using various analytical techniques and theoretical models. Interestingly, the derived F‐hBN displays significant improvement in its thermal and friction properties and displays a semiconducting behavior.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202106084</identifier><identifier>PMID: 34617333</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; bandgap ; Boron nitride ; Electronic devices ; Fluorination ; Fluorine ; friction ; functionalization ; Hexagonal lattice ; Lubricants ; Materials science ; semiconducting</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2106084-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-f1503b740a6b74bf470f162879508d76a83f8dbbce7649fafeb2ea5dfb279d4f3</citedby><cites>FETCH-LOGICAL-c3734-f1503b740a6b74bf470f162879508d76a83f8dbbce7649fafeb2ea5dfb279d4f3</cites><orcidid>0000-0002-9765-4347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202106084$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202106084$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34617333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meiyazhagan, AshokKumar</creatorcontrib><creatorcontrib>Serles, Peter</creatorcontrib><creatorcontrib>Salpekar, Devashish</creatorcontrib><creatorcontrib>Oliveira, Eliezer Fernando</creatorcontrib><creatorcontrib>Alemany, Lawrence B.</creatorcontrib><creatorcontrib>Fu, Riqiang</creatorcontrib><creatorcontrib>Gao, Guanhui</creatorcontrib><creatorcontrib>Arif, Taib</creatorcontrib><creatorcontrib>Vajtai, Robert</creatorcontrib><creatorcontrib>Swaminathan, Venkataraman</creatorcontrib><creatorcontrib>Galvao, Douglas S.</creatorcontrib><creatorcontrib>Khabashesku, Valery N.</creatorcontrib><creatorcontrib>Filleter, Tobin</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><title>Gas‐Phase Fluorination of Hexagonal Boron Nitride</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas‐phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter‐planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in‐plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices.
A simple, scalable strategy is attempted using a direct gas‐phase fluorination technique to fluorinate hexagonal boron nitride (hBN). The nature of fluorine bonding to the hBN lattice and their chemical coordination are evaluated using various analytical techniques and theoretical models. Interestingly, the derived F‐hBN displays significant improvement in its thermal and friction properties and displays a semiconducting behavior.</description><subject>2D materials</subject><subject>bandgap</subject><subject>Boron nitride</subject><subject>Electronic devices</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>friction</subject><subject>functionalization</subject><subject>Hexagonal lattice</subject><subject>Lubricants</subject><subject>Materials science</subject><subject>semiconducting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOAjEUQBujEUS3Lg2JGzeDt4_pY4koYOJroetJZ6bVIQPFlomy8xP8Rr_EEhATN256k-bck5uD0DGGHgYg57qc6h4BgoGDZDuojVOCEwYq3UVtUDRNFGeyhQ5CmACA4sD3UYsyjgWltI3oSIevj8-HFx1Md1g3zlczvajcrOtsd2ze9bOb6bp74Xz8uqsWvirNIdqzug7maDM76Gl49TgYJzf3o-tB_yYpqKAssTgFmgsGmsc3t0yAxZxIoVKQpeBaUivLPC-M4ExZbU1OjE5LmxOhSmZpB52tvXPvXhsTFtm0CoWpaz0zrgkZSWVMwFKlInr6B524xsfLI8UxI1hKQSLVW1OFdyF4Y7O5r6baLzMM2SpntsqZbXPGhZONtsmnptziP_0ioNbAW1Wb5T-6rH952_-VfwOb2YBE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Meiyazhagan, AshokKumar</creator><creator>Serles, Peter</creator><creator>Salpekar, Devashish</creator><creator>Oliveira, Eliezer Fernando</creator><creator>Alemany, Lawrence B.</creator><creator>Fu, Riqiang</creator><creator>Gao, Guanhui</creator><creator>Arif, Taib</creator><creator>Vajtai, Robert</creator><creator>Swaminathan, Venkataraman</creator><creator>Galvao, Douglas S.</creator><creator>Khabashesku, Valery N.</creator><creator>Filleter, Tobin</creator><creator>Ajayan, Pulickel M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9765-4347</orcidid></search><sort><creationdate>20211201</creationdate><title>Gas‐Phase Fluorination of Hexagonal Boron Nitride</title><author>Meiyazhagan, AshokKumar ; Serles, Peter ; Salpekar, Devashish ; Oliveira, Eliezer Fernando ; Alemany, Lawrence B. ; Fu, Riqiang ; Gao, Guanhui ; Arif, Taib ; Vajtai, Robert ; Swaminathan, Venkataraman ; Galvao, Douglas S. ; Khabashesku, Valery N. ; Filleter, Tobin ; Ajayan, Pulickel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-f1503b740a6b74bf470f162879508d76a83f8dbbce7649fafeb2ea5dfb279d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D materials</topic><topic>bandgap</topic><topic>Boron nitride</topic><topic>Electronic devices</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>friction</topic><topic>functionalization</topic><topic>Hexagonal lattice</topic><topic>Lubricants</topic><topic>Materials science</topic><topic>semiconducting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meiyazhagan, AshokKumar</creatorcontrib><creatorcontrib>Serles, Peter</creatorcontrib><creatorcontrib>Salpekar, Devashish</creatorcontrib><creatorcontrib>Oliveira, Eliezer Fernando</creatorcontrib><creatorcontrib>Alemany, Lawrence B.</creatorcontrib><creatorcontrib>Fu, Riqiang</creatorcontrib><creatorcontrib>Gao, Guanhui</creatorcontrib><creatorcontrib>Arif, Taib</creatorcontrib><creatorcontrib>Vajtai, Robert</creatorcontrib><creatorcontrib>Swaminathan, Venkataraman</creatorcontrib><creatorcontrib>Galvao, Douglas S.</creatorcontrib><creatorcontrib>Khabashesku, Valery N.</creatorcontrib><creatorcontrib>Filleter, Tobin</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meiyazhagan, AshokKumar</au><au>Serles, Peter</au><au>Salpekar, Devashish</au><au>Oliveira, Eliezer Fernando</au><au>Alemany, Lawrence B.</au><au>Fu, Riqiang</au><au>Gao, Guanhui</au><au>Arif, Taib</au><au>Vajtai, Robert</au><au>Swaminathan, Venkataraman</au><au>Galvao, Douglas S.</au><au>Khabashesku, Valery N.</au><au>Filleter, Tobin</au><au>Ajayan, Pulickel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas‐Phase Fluorination of Hexagonal Boron Nitride</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>52</issue><spage>e2106084</spage><epage>n/a</epage><pages>e2106084-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas‐phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter‐planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in‐plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices.
A simple, scalable strategy is attempted using a direct gas‐phase fluorination technique to fluorinate hexagonal boron nitride (hBN). The nature of fluorine bonding to the hBN lattice and their chemical coordination are evaluated using various analytical techniques and theoretical models. Interestingly, the derived F‐hBN displays significant improvement in its thermal and friction properties and displays a semiconducting behavior.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34617333</pmid><doi>10.1002/adma.202106084</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9765-4347</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2106084-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2580024599 |
source | Wiley Online Library All Journals |
subjects | 2D materials bandgap Boron nitride Electronic devices Fluorination Fluorine friction functionalization Hexagonal lattice Lubricants Materials science semiconducting |
title | Gas‐Phase Fluorination of Hexagonal Boron Nitride |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%E2%80%90Phase%20Fluorination%20of%20Hexagonal%20Boron%20Nitride&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Meiyazhagan,%20AshokKumar&rft.date=2021-12-01&rft.volume=33&rft.issue=52&rft.spage=e2106084&rft.epage=n/a&rft.pages=e2106084-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202106084&rft_dat=%3Cproquest_cross%3E2580024599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614218872&rft_id=info:pmid/34617333&rfr_iscdi=true |