Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone

Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting para...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2022-01, Vol.236 (1), p.103-120
Hauptverfasser: Wang, Quanwei, Tian, Heqiang, Dang, Xiaoqing, Pan, Jingbo, Gao, Yu, Xu, Qian, Lin, Zhe, Yao, Yanan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 1
container_start_page 103
container_title Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
container_volume 236
creator Wang, Quanwei
Tian, Heqiang
Dang, Xiaoqing
Pan, Jingbo
Gao, Yu
Xu, Qian
Lin, Zhe
Yao, Yanan
description Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting parameters. In this paper, the bone-cutting model was appropriately simplified for finite element (FE) based modeling of 2D orthogonal cutting to discuss the change law of cutting temperature of cortical bones for cervical vertebra, and to study the orthogonal cutting mechanism of the anisotropic cortical bone, a 3D FE simulation model had been also established in which longitudinal, vertical, and transversal cutting types were accomplished to investigate the effect of osteons orientation. Secondly, this response surface method was used to regress the simulation results, and establishes the prediction model of maximum temperature on cutting depth, cutting speed, and feed speed. Then, the Sobol method was used to analyze the sensitivity of the milling temperature prediction mathematical model parameters, in order to clarify and quantitatively analyze the influence of input milling parameters on the output milling temperature. Finally, the cutting temperatures obtained with the simulations were compared with the corresponding experimental results obtained from the bone milling tests. This study verifies the influence of key variables and the cutting parameters on thermo mechanical behavior of the bone cutting. The obtained cutting temperature distribution for the bone surfaces could be employed to establish a theoretical foundation for research on thermal damage control of bone tissues.
doi_str_mv 10.1177/09544119211049869
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580024556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544119211049869</sage_id><sourcerecordid>2580024556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5e6bccaad9d8bb75552c0a4170796198c2e8774d99184daef90649fd26ddecfa3</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhq0K1F0-fkAvVSQuPRCwE3_Ex2VboNJKIAHnyLEnW6-SeGs7lfbf47DQSlScZvTOM-9oZhD6QvAFIUJcYskoJUQWhGAqKy4_oXmBKclLXJYHaD7V8wmYoaMQNhjjBPLPaFZSTgSVdI7cI_Rb8CqOHrLvNkRvmzFaN2QPth87NaXn2b0HY_WLrAaTPcAQbLR_bNxli0F1u2BD5trszsdfbu2Ski3HGO2wntSl89HqpF25AU7QYau6AKev8Rg9Xf94XN7mq7ubn8vFKtclr2LOgDdaK2WkqZpGMMYKjRUlAgvJiax0AZUQ1EhJKmoUtBJzKltTcGNAt6o8Rt_2vlvvfo8QYt3boKHr1ABuDHXBKowLyhhP6Nk7dONGn5ZIFMeMVAUVZaLIntLeheChrbfe9srvaoLr6Rv1f99IPV9fncemB_O34-38CbjYA0Gt4d_Yjx2fAbsZkwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605182473</pqid></control><display><type>article</type><title>Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone</title><source>MEDLINE</source><source>SAGE Complete</source><creator>Wang, Quanwei ; Tian, Heqiang ; Dang, Xiaoqing ; Pan, Jingbo ; Gao, Yu ; Xu, Qian ; Lin, Zhe ; Yao, Yanan</creator><creatorcontrib>Wang, Quanwei ; Tian, Heqiang ; Dang, Xiaoqing ; Pan, Jingbo ; Gao, Yu ; Xu, Qian ; Lin, Zhe ; Yao, Yanan</creatorcontrib><description>Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting parameters. In this paper, the bone-cutting model was appropriately simplified for finite element (FE) based modeling of 2D orthogonal cutting to discuss the change law of cutting temperature of cortical bones for cervical vertebra, and to study the orthogonal cutting mechanism of the anisotropic cortical bone, a 3D FE simulation model had been also established in which longitudinal, vertical, and transversal cutting types were accomplished to investigate the effect of osteons orientation. Secondly, this response surface method was used to regress the simulation results, and establishes the prediction model of maximum temperature on cutting depth, cutting speed, and feed speed. Then, the Sobol method was used to analyze the sensitivity of the milling temperature prediction mathematical model parameters, in order to clarify and quantitatively analyze the influence of input milling parameters on the output milling temperature. Finally, the cutting temperatures obtained with the simulations were compared with the corresponding experimental results obtained from the bone milling tests. This study verifies the influence of key variables and the cutting parameters on thermo mechanical behavior of the bone cutting. The obtained cutting temperature distribution for the bone surfaces could be employed to establish a theoretical foundation for research on thermal damage control of bone tissues.</description><identifier>ISSN: 0954-4119</identifier><identifier>EISSN: 2041-3033</identifier><identifier>DOI: 10.1177/09544119211049869</identifier><identifier>PMID: 34617494</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biomedical materials ; Bone and Bones - surgery ; Bone surgery ; Bones ; Cortical bone ; Cortical Bone - surgery ; Cutting parameters ; Cutting speed ; Electronic devices ; Finite element method ; High temperature ; Hot Temperature ; Mathematical models ; Mechanical properties ; Orientation effects ; Orthopedic Procedures ; Osteons ; Parameter sensitivity ; Prediction models ; Response surface methodology ; Sensitivity analysis ; Simulation ; Spine ; Surface properties ; Temperature ; Temperature control ; Temperature distribution ; Three dimensional models ; Two dimensional models ; Vertebrae</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2022-01, Vol.236 (1), p.103-120</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5e6bccaad9d8bb75552c0a4170796198c2e8774d99184daef90649fd26ddecfa3</citedby><cites>FETCH-LOGICAL-c368t-5e6bccaad9d8bb75552c0a4170796198c2e8774d99184daef90649fd26ddecfa3</cites><orcidid>0000-0001-8961-1489 ; 0000-0002-9671-4862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544119211049869$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544119211049869$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34617494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Quanwei</creatorcontrib><creatorcontrib>Tian, Heqiang</creatorcontrib><creatorcontrib>Dang, Xiaoqing</creatorcontrib><creatorcontrib>Pan, Jingbo</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Yao, Yanan</creatorcontrib><title>Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone</title><title>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine</title><addtitle>Proc Inst Mech Eng H</addtitle><description>Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting parameters. In this paper, the bone-cutting model was appropriately simplified for finite element (FE) based modeling of 2D orthogonal cutting to discuss the change law of cutting temperature of cortical bones for cervical vertebra, and to study the orthogonal cutting mechanism of the anisotropic cortical bone, a 3D FE simulation model had been also established in which longitudinal, vertical, and transversal cutting types were accomplished to investigate the effect of osteons orientation. Secondly, this response surface method was used to regress the simulation results, and establishes the prediction model of maximum temperature on cutting depth, cutting speed, and feed speed. Then, the Sobol method was used to analyze the sensitivity of the milling temperature prediction mathematical model parameters, in order to clarify and quantitatively analyze the influence of input milling parameters on the output milling temperature. Finally, the cutting temperatures obtained with the simulations were compared with the corresponding experimental results obtained from the bone milling tests. This study verifies the influence of key variables and the cutting parameters on thermo mechanical behavior of the bone cutting. The obtained cutting temperature distribution for the bone surfaces could be employed to establish a theoretical foundation for research on thermal damage control of bone tissues.</description><subject>Biomedical materials</subject><subject>Bone and Bones - surgery</subject><subject>Bone surgery</subject><subject>Bones</subject><subject>Cortical bone</subject><subject>Cortical Bone - surgery</subject><subject>Cutting parameters</subject><subject>Cutting speed</subject><subject>Electronic devices</subject><subject>Finite element method</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Orientation effects</subject><subject>Orthopedic Procedures</subject><subject>Osteons</subject><subject>Parameter sensitivity</subject><subject>Prediction models</subject><subject>Response surface methodology</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Spine</subject><subject>Surface properties</subject><subject>Temperature</subject><subject>Temperature control</subject><subject>Temperature distribution</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><subject>Vertebrae</subject><issn>0954-4119</issn><issn>2041-3033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1P3DAQhq0K1F0-fkAvVSQuPRCwE3_Ex2VboNJKIAHnyLEnW6-SeGs7lfbf47DQSlScZvTOM-9oZhD6QvAFIUJcYskoJUQWhGAqKy4_oXmBKclLXJYHaD7V8wmYoaMQNhjjBPLPaFZSTgSVdI7cI_Rb8CqOHrLvNkRvmzFaN2QPth87NaXn2b0HY_WLrAaTPcAQbLR_bNxli0F1u2BD5trszsdfbu2Ski3HGO2wntSl89HqpF25AU7QYau6AKev8Rg9Xf94XN7mq7ubn8vFKtclr2LOgDdaK2WkqZpGMMYKjRUlAgvJiax0AZUQ1EhJKmoUtBJzKltTcGNAt6o8Rt_2vlvvfo8QYt3boKHr1ABuDHXBKowLyhhP6Nk7dONGn5ZIFMeMVAUVZaLIntLeheChrbfe9srvaoLr6Rv1f99IPV9fncemB_O34-38CbjYA0Gt4d_Yjx2fAbsZkwQ</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Wang, Quanwei</creator><creator>Tian, Heqiang</creator><creator>Dang, Xiaoqing</creator><creator>Pan, Jingbo</creator><creator>Gao, Yu</creator><creator>Xu, Qian</creator><creator>Lin, Zhe</creator><creator>Yao, Yanan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8961-1489</orcidid><orcidid>https://orcid.org/0000-0002-9671-4862</orcidid></search><sort><creationdate>202201</creationdate><title>Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone</title><author>Wang, Quanwei ; Tian, Heqiang ; Dang, Xiaoqing ; Pan, Jingbo ; Gao, Yu ; Xu, Qian ; Lin, Zhe ; Yao, Yanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5e6bccaad9d8bb75552c0a4170796198c2e8774d99184daef90649fd26ddecfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical materials</topic><topic>Bone and Bones - surgery</topic><topic>Bone surgery</topic><topic>Bones</topic><topic>Cortical bone</topic><topic>Cortical Bone - surgery</topic><topic>Cutting parameters</topic><topic>Cutting speed</topic><topic>Electronic devices</topic><topic>Finite element method</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Orientation effects</topic><topic>Orthopedic Procedures</topic><topic>Osteons</topic><topic>Parameter sensitivity</topic><topic>Prediction models</topic><topic>Response surface methodology</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Spine</topic><topic>Surface properties</topic><topic>Temperature</topic><topic>Temperature control</topic><topic>Temperature distribution</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Quanwei</creatorcontrib><creatorcontrib>Tian, Heqiang</creatorcontrib><creatorcontrib>Dang, Xiaoqing</creatorcontrib><creatorcontrib>Pan, Jingbo</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Yao, Yanan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Quanwei</au><au>Tian, Heqiang</au><au>Dang, Xiaoqing</au><au>Pan, Jingbo</au><au>Gao, Yu</au><au>Xu, Qian</au><au>Lin, Zhe</au><au>Yao, Yanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine</jtitle><addtitle>Proc Inst Mech Eng H</addtitle><date>2022-01</date><risdate>2022</risdate><volume>236</volume><issue>1</issue><spage>103</spage><epage>120</epage><pages>103-120</pages><issn>0954-4119</issn><eissn>2041-3033</eissn><abstract>Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting parameters. In this paper, the bone-cutting model was appropriately simplified for finite element (FE) based modeling of 2D orthogonal cutting to discuss the change law of cutting temperature of cortical bones for cervical vertebra, and to study the orthogonal cutting mechanism of the anisotropic cortical bone, a 3D FE simulation model had been also established in which longitudinal, vertical, and transversal cutting types were accomplished to investigate the effect of osteons orientation. Secondly, this response surface method was used to regress the simulation results, and establishes the prediction model of maximum temperature on cutting depth, cutting speed, and feed speed. Then, the Sobol method was used to analyze the sensitivity of the milling temperature prediction mathematical model parameters, in order to clarify and quantitatively analyze the influence of input milling parameters on the output milling temperature. Finally, the cutting temperatures obtained with the simulations were compared with the corresponding experimental results obtained from the bone milling tests. This study verifies the influence of key variables and the cutting parameters on thermo mechanical behavior of the bone cutting. The obtained cutting temperature distribution for the bone surfaces could be employed to establish a theoretical foundation for research on thermal damage control of bone tissues.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>34617494</pmid><doi>10.1177/09544119211049869</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8961-1489</orcidid><orcidid>https://orcid.org/0000-0002-9671-4862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4119
ispartof Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2022-01, Vol.236 (1), p.103-120
issn 0954-4119
2041-3033
language eng
recordid cdi_proquest_miscellaneous_2580024556
source MEDLINE; SAGE Complete
subjects Biomedical materials
Bone and Bones - surgery
Bone surgery
Bones
Cortical bone
Cortical Bone - surgery
Cutting parameters
Cutting speed
Electronic devices
Finite element method
High temperature
Hot Temperature
Mathematical models
Mechanical properties
Orientation effects
Orthopedic Procedures
Osteons
Parameter sensitivity
Prediction models
Response surface methodology
Sensitivity analysis
Simulation
Spine
Surface properties
Temperature
Temperature control
Temperature distribution
Three dimensional models
Two dimensional models
Vertebrae
title Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Distribution%20Simulation,%20Prediction%20and%20Sensitivity%20Analysis%20of%20Orthogonal%20Cutting%20of%20Cortical%20Bone&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20H,%20Journal%20of%20engineering%20in%20medicine&rft.au=Wang,%20Quanwei&rft.date=2022-01&rft.volume=236&rft.issue=1&rft.spage=103&rft.epage=120&rft.pages=103-120&rft.issn=0954-4119&rft.eissn=2041-3033&rft_id=info:doi/10.1177/09544119211049869&rft_dat=%3Cproquest_cross%3E2580024556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605182473&rft_id=info:pmid/34617494&rft_sage_id=10.1177_09544119211049869&rfr_iscdi=true