Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone
Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting para...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2022-01, Vol.236 (1), p.103-120 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 1 |
container_start_page | 103 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine |
container_volume | 236 |
creator | Wang, Quanwei Tian, Heqiang Dang, Xiaoqing Pan, Jingbo Gao, Yu Xu, Qian Lin, Zhe Yao, Yanan |
description | Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting parameters. In this paper, the bone-cutting model was appropriately simplified for finite element (FE) based modeling of 2D orthogonal cutting to discuss the change law of cutting temperature of cortical bones for cervical vertebra, and to study the orthogonal cutting mechanism of the anisotropic cortical bone, a 3D FE simulation model had been also established in which longitudinal, vertical, and transversal cutting types were accomplished to investigate the effect of osteons orientation. Secondly, this response surface method was used to regress the simulation results, and establishes the prediction model of maximum temperature on cutting depth, cutting speed, and feed speed. Then, the Sobol method was used to analyze the sensitivity of the milling temperature prediction mathematical model parameters, in order to clarify and quantitatively analyze the influence of input milling parameters on the output milling temperature. Finally, the cutting temperatures obtained with the simulations were compared with the corresponding experimental results obtained from the bone milling tests. This study verifies the influence of key variables and the cutting parameters on thermo mechanical behavior of the bone cutting. The obtained cutting temperature distribution for the bone surfaces could be employed to establish a theoretical foundation for research on thermal damage control of bone tissues. |
doi_str_mv | 10.1177/09544119211049869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580024556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544119211049869</sage_id><sourcerecordid>2580024556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5e6bccaad9d8bb75552c0a4170796198c2e8774d99184daef90649fd26ddecfa3</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhq0K1F0-fkAvVSQuPRCwE3_Ex2VboNJKIAHnyLEnW6-SeGs7lfbf47DQSlScZvTOM-9oZhD6QvAFIUJcYskoJUQWhGAqKy4_oXmBKclLXJYHaD7V8wmYoaMQNhjjBPLPaFZSTgSVdI7cI_Rb8CqOHrLvNkRvmzFaN2QPth87NaXn2b0HY_WLrAaTPcAQbLR_bNxli0F1u2BD5trszsdfbu2Ski3HGO2wntSl89HqpF25AU7QYau6AKev8Rg9Xf94XN7mq7ubn8vFKtclr2LOgDdaK2WkqZpGMMYKjRUlAgvJiax0AZUQ1EhJKmoUtBJzKltTcGNAt6o8Rt_2vlvvfo8QYt3boKHr1ABuDHXBKowLyhhP6Nk7dONGn5ZIFMeMVAUVZaLIntLeheChrbfe9srvaoLr6Rv1f99IPV9fncemB_O34-38CbjYA0Gt4d_Yjx2fAbsZkwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605182473</pqid></control><display><type>article</type><title>Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone</title><source>MEDLINE</source><source>SAGE Complete</source><creator>Wang, Quanwei ; Tian, Heqiang ; Dang, Xiaoqing ; Pan, Jingbo ; Gao, Yu ; Xu, Qian ; Lin, Zhe ; Yao, Yanan</creator><creatorcontrib>Wang, Quanwei ; Tian, Heqiang ; Dang, Xiaoqing ; Pan, Jingbo ; Gao, Yu ; Xu, Qian ; Lin, Zhe ; Yao, Yanan</creatorcontrib><description>Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting parameters. In this paper, the bone-cutting model was appropriately simplified for finite element (FE) based modeling of 2D orthogonal cutting to discuss the change law of cutting temperature of cortical bones for cervical vertebra, and to study the orthogonal cutting mechanism of the anisotropic cortical bone, a 3D FE simulation model had been also established in which longitudinal, vertical, and transversal cutting types were accomplished to investigate the effect of osteons orientation. Secondly, this response surface method was used to regress the simulation results, and establishes the prediction model of maximum temperature on cutting depth, cutting speed, and feed speed. Then, the Sobol method was used to analyze the sensitivity of the milling temperature prediction mathematical model parameters, in order to clarify and quantitatively analyze the influence of input milling parameters on the output milling temperature. Finally, the cutting temperatures obtained with the simulations were compared with the corresponding experimental results obtained from the bone milling tests. This study verifies the influence of key variables and the cutting parameters on thermo mechanical behavior of the bone cutting. The obtained cutting temperature distribution for the bone surfaces could be employed to establish a theoretical foundation for research on thermal damage control of bone tissues.</description><identifier>ISSN: 0954-4119</identifier><identifier>EISSN: 2041-3033</identifier><identifier>DOI: 10.1177/09544119211049869</identifier><identifier>PMID: 34617494</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biomedical materials ; Bone and Bones - surgery ; Bone surgery ; Bones ; Cortical bone ; Cortical Bone - surgery ; Cutting parameters ; Cutting speed ; Electronic devices ; Finite element method ; High temperature ; Hot Temperature ; Mathematical models ; Mechanical properties ; Orientation effects ; Orthopedic Procedures ; Osteons ; Parameter sensitivity ; Prediction models ; Response surface methodology ; Sensitivity analysis ; Simulation ; Spine ; Surface properties ; Temperature ; Temperature control ; Temperature distribution ; Three dimensional models ; Two dimensional models ; Vertebrae</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2022-01, Vol.236 (1), p.103-120</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5e6bccaad9d8bb75552c0a4170796198c2e8774d99184daef90649fd26ddecfa3</citedby><cites>FETCH-LOGICAL-c368t-5e6bccaad9d8bb75552c0a4170796198c2e8774d99184daef90649fd26ddecfa3</cites><orcidid>0000-0001-8961-1489 ; 0000-0002-9671-4862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544119211049869$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544119211049869$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34617494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Quanwei</creatorcontrib><creatorcontrib>Tian, Heqiang</creatorcontrib><creatorcontrib>Dang, Xiaoqing</creatorcontrib><creatorcontrib>Pan, Jingbo</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Yao, Yanan</creatorcontrib><title>Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone</title><title>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine</title><addtitle>Proc Inst Mech Eng H</addtitle><description>Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting parameters. In this paper, the bone-cutting model was appropriately simplified for finite element (FE) based modeling of 2D orthogonal cutting to discuss the change law of cutting temperature of cortical bones for cervical vertebra, and to study the orthogonal cutting mechanism of the anisotropic cortical bone, a 3D FE simulation model had been also established in which longitudinal, vertical, and transversal cutting types were accomplished to investigate the effect of osteons orientation. Secondly, this response surface method was used to regress the simulation results, and establishes the prediction model of maximum temperature on cutting depth, cutting speed, and feed speed. Then, the Sobol method was used to analyze the sensitivity of the milling temperature prediction mathematical model parameters, in order to clarify and quantitatively analyze the influence of input milling parameters on the output milling temperature. Finally, the cutting temperatures obtained with the simulations were compared with the corresponding experimental results obtained from the bone milling tests. This study verifies the influence of key variables and the cutting parameters on thermo mechanical behavior of the bone cutting. The obtained cutting temperature distribution for the bone surfaces could be employed to establish a theoretical foundation for research on thermal damage control of bone tissues.</description><subject>Biomedical materials</subject><subject>Bone and Bones - surgery</subject><subject>Bone surgery</subject><subject>Bones</subject><subject>Cortical bone</subject><subject>Cortical Bone - surgery</subject><subject>Cutting parameters</subject><subject>Cutting speed</subject><subject>Electronic devices</subject><subject>Finite element method</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Orientation effects</subject><subject>Orthopedic Procedures</subject><subject>Osteons</subject><subject>Parameter sensitivity</subject><subject>Prediction models</subject><subject>Response surface methodology</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Spine</subject><subject>Surface properties</subject><subject>Temperature</subject><subject>Temperature control</subject><subject>Temperature distribution</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><subject>Vertebrae</subject><issn>0954-4119</issn><issn>2041-3033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1P3DAQhq0K1F0-fkAvVSQuPRCwE3_Ex2VboNJKIAHnyLEnW6-SeGs7lfbf47DQSlScZvTOM-9oZhD6QvAFIUJcYskoJUQWhGAqKy4_oXmBKclLXJYHaD7V8wmYoaMQNhjjBPLPaFZSTgSVdI7cI_Rb8CqOHrLvNkRvmzFaN2QPth87NaXn2b0HY_WLrAaTPcAQbLR_bNxli0F1u2BD5trszsdfbu2Ski3HGO2wntSl89HqpF25AU7QYau6AKev8Rg9Xf94XN7mq7ubn8vFKtclr2LOgDdaK2WkqZpGMMYKjRUlAgvJiax0AZUQ1EhJKmoUtBJzKltTcGNAt6o8Rt_2vlvvfo8QYt3boKHr1ABuDHXBKowLyhhP6Nk7dONGn5ZIFMeMVAUVZaLIntLeheChrbfe9srvaoLr6Rv1f99IPV9fncemB_O34-38CbjYA0Gt4d_Yjx2fAbsZkwQ</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Wang, Quanwei</creator><creator>Tian, Heqiang</creator><creator>Dang, Xiaoqing</creator><creator>Pan, Jingbo</creator><creator>Gao, Yu</creator><creator>Xu, Qian</creator><creator>Lin, Zhe</creator><creator>Yao, Yanan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8961-1489</orcidid><orcidid>https://orcid.org/0000-0002-9671-4862</orcidid></search><sort><creationdate>202201</creationdate><title>Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone</title><author>Wang, Quanwei ; Tian, Heqiang ; Dang, Xiaoqing ; Pan, Jingbo ; Gao, Yu ; Xu, Qian ; Lin, Zhe ; Yao, Yanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5e6bccaad9d8bb75552c0a4170796198c2e8774d99184daef90649fd26ddecfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical materials</topic><topic>Bone and Bones - surgery</topic><topic>Bone surgery</topic><topic>Bones</topic><topic>Cortical bone</topic><topic>Cortical Bone - surgery</topic><topic>Cutting parameters</topic><topic>Cutting speed</topic><topic>Electronic devices</topic><topic>Finite element method</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Orientation effects</topic><topic>Orthopedic Procedures</topic><topic>Osteons</topic><topic>Parameter sensitivity</topic><topic>Prediction models</topic><topic>Response surface methodology</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Spine</topic><topic>Surface properties</topic><topic>Temperature</topic><topic>Temperature control</topic><topic>Temperature distribution</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Quanwei</creatorcontrib><creatorcontrib>Tian, Heqiang</creatorcontrib><creatorcontrib>Dang, Xiaoqing</creatorcontrib><creatorcontrib>Pan, Jingbo</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Yao, Yanan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Quanwei</au><au>Tian, Heqiang</au><au>Dang, Xiaoqing</au><au>Pan, Jingbo</au><au>Gao, Yu</au><au>Xu, Qian</au><au>Lin, Zhe</au><au>Yao, Yanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine</jtitle><addtitle>Proc Inst Mech Eng H</addtitle><date>2022-01</date><risdate>2022</risdate><volume>236</volume><issue>1</issue><spage>103</spage><epage>120</epage><pages>103-120</pages><issn>0954-4119</issn><eissn>2041-3033</eissn><abstract>Bone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting parameters. In this paper, the bone-cutting model was appropriately simplified for finite element (FE) based modeling of 2D orthogonal cutting to discuss the change law of cutting temperature of cortical bones for cervical vertebra, and to study the orthogonal cutting mechanism of the anisotropic cortical bone, a 3D FE simulation model had been also established in which longitudinal, vertical, and transversal cutting types were accomplished to investigate the effect of osteons orientation. Secondly, this response surface method was used to regress the simulation results, and establishes the prediction model of maximum temperature on cutting depth, cutting speed, and feed speed. Then, the Sobol method was used to analyze the sensitivity of the milling temperature prediction mathematical model parameters, in order to clarify and quantitatively analyze the influence of input milling parameters on the output milling temperature. Finally, the cutting temperatures obtained with the simulations were compared with the corresponding experimental results obtained from the bone milling tests. This study verifies the influence of key variables and the cutting parameters on thermo mechanical behavior of the bone cutting. The obtained cutting temperature distribution for the bone surfaces could be employed to establish a theoretical foundation for research on thermal damage control of bone tissues.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>34617494</pmid><doi>10.1177/09544119211049869</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8961-1489</orcidid><orcidid>https://orcid.org/0000-0002-9671-4862</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4119 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2022-01, Vol.236 (1), p.103-120 |
issn | 0954-4119 2041-3033 |
language | eng |
recordid | cdi_proquest_miscellaneous_2580024556 |
source | MEDLINE; SAGE Complete |
subjects | Biomedical materials Bone and Bones - surgery Bone surgery Bones Cortical bone Cortical Bone - surgery Cutting parameters Cutting speed Electronic devices Finite element method High temperature Hot Temperature Mathematical models Mechanical properties Orientation effects Orthopedic Procedures Osteons Parameter sensitivity Prediction models Response surface methodology Sensitivity analysis Simulation Spine Surface properties Temperature Temperature control Temperature distribution Three dimensional models Two dimensional models Vertebrae |
title | Temperature Distribution Simulation, Prediction and Sensitivity Analysis of Orthogonal Cutting of Cortical Bone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Distribution%20Simulation,%20Prediction%20and%20Sensitivity%20Analysis%20of%20Orthogonal%20Cutting%20of%20Cortical%20Bone&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20H,%20Journal%20of%20engineering%20in%20medicine&rft.au=Wang,%20Quanwei&rft.date=2022-01&rft.volume=236&rft.issue=1&rft.spage=103&rft.epage=120&rft.pages=103-120&rft.issn=0954-4119&rft.eissn=2041-3033&rft_id=info:doi/10.1177/09544119211049869&rft_dat=%3Cproquest_cross%3E2580024556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605182473&rft_id=info:pmid/34617494&rft_sage_id=10.1177_09544119211049869&rfr_iscdi=true |