Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion

A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-01, Vol.34 (1), p.e2105789-n/a
Hauptverfasser: Tang, Junma, Tang, Jianbo, Mayyas, Mohannad, Ghasemian, Mohammad B., Sun, Jing, Rahim, Md Arifur, Yang, Jiong, Han, Jialuo, Lawes, Douglas J., Jalili, Rouhollah, Daeneke, Torben, Saborio, Maricruz G., Cao, Zhenbang, Echeverria, Claudia A., Allioux, Francois‐Marie, Zavabeti, Ali, Hamilton, Jessica, Mitchell, Valerie, O'Mullane, Anthony P., Kaner, Richard B., Esrafilzadeh, Dorna, Dickey, Michael D., Kalantar‐Zadeh, Kourosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2105789
container_title Advanced materials (Weinheim)
container_volume 34
creator Tang, Junma
Tang, Jianbo
Mayyas, Mohannad
Ghasemian, Mohammad B.
Sun, Jing
Rahim, Md Arifur
Yang, Jiong
Han, Jialuo
Lawes, Douglas J.
Jalili, Rouhollah
Daeneke, Torben
Saborio, Maricruz G.
Cao, Zhenbang
Echeverria, Claudia A.
Allioux, Francois‐Marie
Zavabeti, Ali
Hamilton, Jessica
Mitchell, Valerie
O'Mullane, Anthony P.
Kaner, Richard B.
Esrafilzadeh, Dorna
Dickey, Michael D.
Kalantar‐Zadeh, Kourosh
description A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co‐contributor of silver–gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano‐dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2) for the capture and conversion of a tonne of CO2. This green technology presents an economical solution for CO2 emissions. With mechanical energy as the stimulus, CO2 is converted into solid carbon and O2 in a liquid‐metal‐based reaction system. Using the synergism of Ga nanodroplets and Ag–Ga nanorods, CO2 conversion proceeds through the triboelectrochemical reaction on Ga, while the Ag–Ga rods ensure the system's sustainability. This is achieved at a remarkably low energy consumption and high efficiency.
doi_str_mv 10.1002/adma.202105789
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579632214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579632214</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3729-b9374deaa1dab54769d581b9b078df1241c0c47072309fdfc8f745adbb150e083</originalsourceid><addsrcrecordid>eNpdkMtOwkAUhidGExHduiZx46Z45tbpLElFJYGw0fVkbtUhZQot1XTnI_iMPoklEBau_nP585-TD6FbDGMMQB60W-sxAYKBi0yeoQHmBCcMJD9HA5CUJzJl2SW6apoVAMgU0gGazsO2De73-2fhd7rsdRq1Kb0bLbz90DHY49DX711fzKJrbb_Nl2SUV_HT102o4jW6KHTZ-JujDtHb0_Q1f0nmy-dZPpknKyqITIykgjmvNXbacCZS6XiGjTQgMldgwrAFywQIQkEWrrBZIRjXzhjMwUNGh-j-kLupq23rm51ah8b6stTRV22jCBcypYRg1lvv_llXVVvH_jtFUtxfwJzvA-XB9RVK36lNHda67hQGtUeq9kjVCamaPC4mp47-AUNsbw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617231558</pqid></control><display><type>article</type><title>Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tang, Junma ; Tang, Jianbo ; Mayyas, Mohannad ; Ghasemian, Mohammad B. ; Sun, Jing ; Rahim, Md Arifur ; Yang, Jiong ; Han, Jialuo ; Lawes, Douglas J. ; Jalili, Rouhollah ; Daeneke, Torben ; Saborio, Maricruz G. ; Cao, Zhenbang ; Echeverria, Claudia A. ; Allioux, Francois‐Marie ; Zavabeti, Ali ; Hamilton, Jessica ; Mitchell, Valerie ; O'Mullane, Anthony P. ; Kaner, Richard B. ; Esrafilzadeh, Dorna ; Dickey, Michael D. ; Kalantar‐Zadeh, Kourosh</creator><creatorcontrib>Tang, Junma ; Tang, Jianbo ; Mayyas, Mohannad ; Ghasemian, Mohammad B. ; Sun, Jing ; Rahim, Md Arifur ; Yang, Jiong ; Han, Jialuo ; Lawes, Douglas J. ; Jalili, Rouhollah ; Daeneke, Torben ; Saborio, Maricruz G. ; Cao, Zhenbang ; Echeverria, Claudia A. ; Allioux, Francois‐Marie ; Zavabeti, Ali ; Hamilton, Jessica ; Mitchell, Valerie ; O'Mullane, Anthony P. ; Kaner, Richard B. ; Esrafilzadeh, Dorna ; Dickey, Michael D. ; Kalantar‐Zadeh, Kourosh</creatorcontrib><description>A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co‐contributor of silver–gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano‐dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2) for the capture and conversion of a tonne of CO2. This green technology presents an economical solution for CO2 emissions. With mechanical energy as the stimulus, CO2 is converted into solid carbon and O2 in a liquid‐metal‐based reaction system. Using the synergism of Ga nanodroplets and Ag–Ga nanorods, CO2 conversion proceeds through the triboelectrochemical reaction on Ga, while the Ag–Ga rods ensure the system's sustainability. This is achieved at a remarkably low energy consumption and high efficiency.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202105789</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Carbon sequestration ; CO 2 conversion ; Conversion ; Gallium ; Liquid metals ; Materials science ; mechanical energy ; Room temperature ; Silver ; triboelectrochemical reactions</subject><ispartof>Advanced materials (Weinheim), 2022-01, Vol.34 (1), p.e2105789-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6109-132X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202105789$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202105789$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tang, Junma</creatorcontrib><creatorcontrib>Tang, Jianbo</creatorcontrib><creatorcontrib>Mayyas, Mohannad</creatorcontrib><creatorcontrib>Ghasemian, Mohammad B.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Rahim, Md Arifur</creatorcontrib><creatorcontrib>Yang, Jiong</creatorcontrib><creatorcontrib>Han, Jialuo</creatorcontrib><creatorcontrib>Lawes, Douglas J.</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>Saborio, Maricruz G.</creatorcontrib><creatorcontrib>Cao, Zhenbang</creatorcontrib><creatorcontrib>Echeverria, Claudia A.</creatorcontrib><creatorcontrib>Allioux, Francois‐Marie</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Hamilton, Jessica</creatorcontrib><creatorcontrib>Mitchell, Valerie</creatorcontrib><creatorcontrib>O'Mullane, Anthony P.</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><creatorcontrib>Esrafilzadeh, Dorna</creatorcontrib><creatorcontrib>Dickey, Michael D.</creatorcontrib><creatorcontrib>Kalantar‐Zadeh, Kourosh</creatorcontrib><title>Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion</title><title>Advanced materials (Weinheim)</title><description>A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co‐contributor of silver–gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano‐dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2) for the capture and conversion of a tonne of CO2. This green technology presents an economical solution for CO2 emissions. With mechanical energy as the stimulus, CO2 is converted into solid carbon and O2 in a liquid‐metal‐based reaction system. Using the synergism of Ga nanodroplets and Ag–Ga nanorods, CO2 conversion proceeds through the triboelectrochemical reaction on Ga, while the Ag–Ga rods ensure the system's sustainability. This is achieved at a remarkably low energy consumption and high efficiency.</description><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>CO 2 conversion</subject><subject>Conversion</subject><subject>Gallium</subject><subject>Liquid metals</subject><subject>Materials science</subject><subject>mechanical energy</subject><subject>Room temperature</subject><subject>Silver</subject><subject>triboelectrochemical reactions</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwkAUhidGExHduiZx46Z45tbpLElFJYGw0fVkbtUhZQot1XTnI_iMPoklEBau_nP585-TD6FbDGMMQB60W-sxAYKBi0yeoQHmBCcMJD9HA5CUJzJl2SW6apoVAMgU0gGazsO2De73-2fhd7rsdRq1Kb0bLbz90DHY49DX711fzKJrbb_Nl2SUV_HT102o4jW6KHTZ-JujDtHb0_Q1f0nmy-dZPpknKyqITIykgjmvNXbacCZS6XiGjTQgMldgwrAFywQIQkEWrrBZIRjXzhjMwUNGh-j-kLupq23rm51ah8b6stTRV22jCBcypYRg1lvv_llXVVvH_jtFUtxfwJzvA-XB9RVK36lNHda67hQGtUeq9kjVCamaPC4mp47-AUNsbw8</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Tang, Junma</creator><creator>Tang, Jianbo</creator><creator>Mayyas, Mohannad</creator><creator>Ghasemian, Mohammad B.</creator><creator>Sun, Jing</creator><creator>Rahim, Md Arifur</creator><creator>Yang, Jiong</creator><creator>Han, Jialuo</creator><creator>Lawes, Douglas J.</creator><creator>Jalili, Rouhollah</creator><creator>Daeneke, Torben</creator><creator>Saborio, Maricruz G.</creator><creator>Cao, Zhenbang</creator><creator>Echeverria, Claudia A.</creator><creator>Allioux, Francois‐Marie</creator><creator>Zavabeti, Ali</creator><creator>Hamilton, Jessica</creator><creator>Mitchell, Valerie</creator><creator>O'Mullane, Anthony P.</creator><creator>Kaner, Richard B.</creator><creator>Esrafilzadeh, Dorna</creator><creator>Dickey, Michael D.</creator><creator>Kalantar‐Zadeh, Kourosh</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid></search><sort><creationdate>20220101</creationdate><title>Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion</title><author>Tang, Junma ; Tang, Jianbo ; Mayyas, Mohannad ; Ghasemian, Mohammad B. ; Sun, Jing ; Rahim, Md Arifur ; Yang, Jiong ; Han, Jialuo ; Lawes, Douglas J. ; Jalili, Rouhollah ; Daeneke, Torben ; Saborio, Maricruz G. ; Cao, Zhenbang ; Echeverria, Claudia A. ; Allioux, Francois‐Marie ; Zavabeti, Ali ; Hamilton, Jessica ; Mitchell, Valerie ; O'Mullane, Anthony P. ; Kaner, Richard B. ; Esrafilzadeh, Dorna ; Dickey, Michael D. ; Kalantar‐Zadeh, Kourosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3729-b9374deaa1dab54769d581b9b078df1241c0c47072309fdfc8f745adbb150e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>CO 2 conversion</topic><topic>Conversion</topic><topic>Gallium</topic><topic>Liquid metals</topic><topic>Materials science</topic><topic>mechanical energy</topic><topic>Room temperature</topic><topic>Silver</topic><topic>triboelectrochemical reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Junma</creatorcontrib><creatorcontrib>Tang, Jianbo</creatorcontrib><creatorcontrib>Mayyas, Mohannad</creatorcontrib><creatorcontrib>Ghasemian, Mohammad B.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Rahim, Md Arifur</creatorcontrib><creatorcontrib>Yang, Jiong</creatorcontrib><creatorcontrib>Han, Jialuo</creatorcontrib><creatorcontrib>Lawes, Douglas J.</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>Saborio, Maricruz G.</creatorcontrib><creatorcontrib>Cao, Zhenbang</creatorcontrib><creatorcontrib>Echeverria, Claudia A.</creatorcontrib><creatorcontrib>Allioux, Francois‐Marie</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Hamilton, Jessica</creatorcontrib><creatorcontrib>Mitchell, Valerie</creatorcontrib><creatorcontrib>O'Mullane, Anthony P.</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><creatorcontrib>Esrafilzadeh, Dorna</creatorcontrib><creatorcontrib>Dickey, Michael D.</creatorcontrib><creatorcontrib>Kalantar‐Zadeh, Kourosh</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Junma</au><au>Tang, Jianbo</au><au>Mayyas, Mohannad</au><au>Ghasemian, Mohammad B.</au><au>Sun, Jing</au><au>Rahim, Md Arifur</au><au>Yang, Jiong</au><au>Han, Jialuo</au><au>Lawes, Douglas J.</au><au>Jalili, Rouhollah</au><au>Daeneke, Torben</au><au>Saborio, Maricruz G.</au><au>Cao, Zhenbang</au><au>Echeverria, Claudia A.</au><au>Allioux, Francois‐Marie</au><au>Zavabeti, Ali</au><au>Hamilton, Jessica</au><au>Mitchell, Valerie</au><au>O'Mullane, Anthony P.</au><au>Kaner, Richard B.</au><au>Esrafilzadeh, Dorna</au><au>Dickey, Michael D.</au><au>Kalantar‐Zadeh, Kourosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><spage>e2105789</spage><epage>n/a</epage><pages>e2105789-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co‐contributor of silver–gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano‐dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2) for the capture and conversion of a tonne of CO2. This green technology presents an economical solution for CO2 emissions. With mechanical energy as the stimulus, CO2 is converted into solid carbon and O2 in a liquid‐metal‐based reaction system. Using the synergism of Ga nanodroplets and Ag–Ga nanorods, CO2 conversion proceeds through the triboelectrochemical reaction on Ga, while the Ag–Ga rods ensure the system's sustainability. This is achieved at a remarkably low energy consumption and high efficiency.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202105789</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-01, Vol.34 (1), p.e2105789-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2579632214
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Carbon sequestration
CO 2 conversion
Conversion
Gallium
Liquid metals
Materials science
mechanical energy
Room temperature
Silver
triboelectrochemical reactions
title Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%E2%80%90Metal%E2%80%90Enabled%20Mechanical%E2%80%90Energy%E2%80%90Induced%20CO2%20Conversion&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Tang,%20Junma&rft.date=2022-01-01&rft.volume=34&rft.issue=1&rft.spage=e2105789&rft.epage=n/a&rft.pages=e2105789-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202105789&rft_dat=%3Cproquest_wiley%3E2579632214%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617231558&rft_id=info:pmid/&rfr_iscdi=true