Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion
A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the li...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-01, Vol.34 (1), p.e2105789-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e2105789 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Tang, Junma Tang, Jianbo Mayyas, Mohannad Ghasemian, Mohammad B. Sun, Jing Rahim, Md Arifur Yang, Jiong Han, Jialuo Lawes, Douglas J. Jalili, Rouhollah Daeneke, Torben Saborio, Maricruz G. Cao, Zhenbang Echeverria, Claudia A. Allioux, Francois‐Marie Zavabeti, Ali Hamilton, Jessica Mitchell, Valerie O'Mullane, Anthony P. Kaner, Richard B. Esrafilzadeh, Dorna Dickey, Michael D. Kalantar‐Zadeh, Kourosh |
description | A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co‐contributor of silver–gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano‐dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2) for the capture and conversion of a tonne of CO2. This green technology presents an economical solution for CO2 emissions.
With mechanical energy as the stimulus, CO2 is converted into solid carbon and O2 in a liquid‐metal‐based reaction system. Using the synergism of Ga nanodroplets and Ag–Ga nanorods, CO2 conversion proceeds through the triboelectrochemical reaction on Ga, while the Ag–Ga rods ensure the system's sustainability. This is achieved at a remarkably low energy consumption and high efficiency. |
doi_str_mv | 10.1002/adma.202105789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579632214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579632214</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3729-b9374deaa1dab54769d581b9b078df1241c0c47072309fdfc8f745adbb150e083</originalsourceid><addsrcrecordid>eNpdkMtOwkAUhidGExHduiZx46Z45tbpLElFJYGw0fVkbtUhZQot1XTnI_iMPoklEBau_nP585-TD6FbDGMMQB60W-sxAYKBi0yeoQHmBCcMJD9HA5CUJzJl2SW6apoVAMgU0gGazsO2De73-2fhd7rsdRq1Kb0bLbz90DHY49DX711fzKJrbb_Nl2SUV_HT102o4jW6KHTZ-JujDtHb0_Q1f0nmy-dZPpknKyqITIykgjmvNXbacCZS6XiGjTQgMldgwrAFywQIQkEWrrBZIRjXzhjMwUNGh-j-kLupq23rm51ah8b6stTRV22jCBcypYRg1lvv_llXVVvH_jtFUtxfwJzvA-XB9RVK36lNHda67hQGtUeq9kjVCamaPC4mp47-AUNsbw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617231558</pqid></control><display><type>article</type><title>Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tang, Junma ; Tang, Jianbo ; Mayyas, Mohannad ; Ghasemian, Mohammad B. ; Sun, Jing ; Rahim, Md Arifur ; Yang, Jiong ; Han, Jialuo ; Lawes, Douglas J. ; Jalili, Rouhollah ; Daeneke, Torben ; Saborio, Maricruz G. ; Cao, Zhenbang ; Echeverria, Claudia A. ; Allioux, Francois‐Marie ; Zavabeti, Ali ; Hamilton, Jessica ; Mitchell, Valerie ; O'Mullane, Anthony P. ; Kaner, Richard B. ; Esrafilzadeh, Dorna ; Dickey, Michael D. ; Kalantar‐Zadeh, Kourosh</creator><creatorcontrib>Tang, Junma ; Tang, Jianbo ; Mayyas, Mohannad ; Ghasemian, Mohammad B. ; Sun, Jing ; Rahim, Md Arifur ; Yang, Jiong ; Han, Jialuo ; Lawes, Douglas J. ; Jalili, Rouhollah ; Daeneke, Torben ; Saborio, Maricruz G. ; Cao, Zhenbang ; Echeverria, Claudia A. ; Allioux, Francois‐Marie ; Zavabeti, Ali ; Hamilton, Jessica ; Mitchell, Valerie ; O'Mullane, Anthony P. ; Kaner, Richard B. ; Esrafilzadeh, Dorna ; Dickey, Michael D. ; Kalantar‐Zadeh, Kourosh</creatorcontrib><description>A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co‐contributor of silver–gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano‐dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2) for the capture and conversion of a tonne of CO2. This green technology presents an economical solution for CO2 emissions.
With mechanical energy as the stimulus, CO2 is converted into solid carbon and O2 in a liquid‐metal‐based reaction system. Using the synergism of Ga nanodroplets and Ag–Ga nanorods, CO2 conversion proceeds through the triboelectrochemical reaction on Ga, while the Ag–Ga rods ensure the system's sustainability. This is achieved at a remarkably low energy consumption and high efficiency.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202105789</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Carbon sequestration ; CO 2 conversion ; Conversion ; Gallium ; Liquid metals ; Materials science ; mechanical energy ; Room temperature ; Silver ; triboelectrochemical reactions</subject><ispartof>Advanced materials (Weinheim), 2022-01, Vol.34 (1), p.e2105789-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6109-132X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202105789$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202105789$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tang, Junma</creatorcontrib><creatorcontrib>Tang, Jianbo</creatorcontrib><creatorcontrib>Mayyas, Mohannad</creatorcontrib><creatorcontrib>Ghasemian, Mohammad B.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Rahim, Md Arifur</creatorcontrib><creatorcontrib>Yang, Jiong</creatorcontrib><creatorcontrib>Han, Jialuo</creatorcontrib><creatorcontrib>Lawes, Douglas J.</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>Saborio, Maricruz G.</creatorcontrib><creatorcontrib>Cao, Zhenbang</creatorcontrib><creatorcontrib>Echeverria, Claudia A.</creatorcontrib><creatorcontrib>Allioux, Francois‐Marie</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Hamilton, Jessica</creatorcontrib><creatorcontrib>Mitchell, Valerie</creatorcontrib><creatorcontrib>O'Mullane, Anthony P.</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><creatorcontrib>Esrafilzadeh, Dorna</creatorcontrib><creatorcontrib>Dickey, Michael D.</creatorcontrib><creatorcontrib>Kalantar‐Zadeh, Kourosh</creatorcontrib><title>Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion</title><title>Advanced materials (Weinheim)</title><description>A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co‐contributor of silver–gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano‐dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2) for the capture and conversion of a tonne of CO2. This green technology presents an economical solution for CO2 emissions.
With mechanical energy as the stimulus, CO2 is converted into solid carbon and O2 in a liquid‐metal‐based reaction system. Using the synergism of Ga nanodroplets and Ag–Ga nanorods, CO2 conversion proceeds through the triboelectrochemical reaction on Ga, while the Ag–Ga rods ensure the system's sustainability. This is achieved at a remarkably low energy consumption and high efficiency.</description><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>CO 2 conversion</subject><subject>Conversion</subject><subject>Gallium</subject><subject>Liquid metals</subject><subject>Materials science</subject><subject>mechanical energy</subject><subject>Room temperature</subject><subject>Silver</subject><subject>triboelectrochemical reactions</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwkAUhidGExHduiZx46Z45tbpLElFJYGw0fVkbtUhZQot1XTnI_iMPoklEBau_nP585-TD6FbDGMMQB60W-sxAYKBi0yeoQHmBCcMJD9HA5CUJzJl2SW6apoVAMgU0gGazsO2De73-2fhd7rsdRq1Kb0bLbz90DHY49DX711fzKJrbb_Nl2SUV_HT102o4jW6KHTZ-JujDtHb0_Q1f0nmy-dZPpknKyqITIykgjmvNXbacCZS6XiGjTQgMldgwrAFywQIQkEWrrBZIRjXzhjMwUNGh-j-kLupq23rm51ah8b6stTRV22jCBcypYRg1lvv_llXVVvH_jtFUtxfwJzvA-XB9RVK36lNHda67hQGtUeq9kjVCamaPC4mp47-AUNsbw8</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Tang, Junma</creator><creator>Tang, Jianbo</creator><creator>Mayyas, Mohannad</creator><creator>Ghasemian, Mohammad B.</creator><creator>Sun, Jing</creator><creator>Rahim, Md Arifur</creator><creator>Yang, Jiong</creator><creator>Han, Jialuo</creator><creator>Lawes, Douglas J.</creator><creator>Jalili, Rouhollah</creator><creator>Daeneke, Torben</creator><creator>Saborio, Maricruz G.</creator><creator>Cao, Zhenbang</creator><creator>Echeverria, Claudia A.</creator><creator>Allioux, Francois‐Marie</creator><creator>Zavabeti, Ali</creator><creator>Hamilton, Jessica</creator><creator>Mitchell, Valerie</creator><creator>O'Mullane, Anthony P.</creator><creator>Kaner, Richard B.</creator><creator>Esrafilzadeh, Dorna</creator><creator>Dickey, Michael D.</creator><creator>Kalantar‐Zadeh, Kourosh</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid></search><sort><creationdate>20220101</creationdate><title>Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion</title><author>Tang, Junma ; Tang, Jianbo ; Mayyas, Mohannad ; Ghasemian, Mohammad B. ; Sun, Jing ; Rahim, Md Arifur ; Yang, Jiong ; Han, Jialuo ; Lawes, Douglas J. ; Jalili, Rouhollah ; Daeneke, Torben ; Saborio, Maricruz G. ; Cao, Zhenbang ; Echeverria, Claudia A. ; Allioux, Francois‐Marie ; Zavabeti, Ali ; Hamilton, Jessica ; Mitchell, Valerie ; O'Mullane, Anthony P. ; Kaner, Richard B. ; Esrafilzadeh, Dorna ; Dickey, Michael D. ; Kalantar‐Zadeh, Kourosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3729-b9374deaa1dab54769d581b9b078df1241c0c47072309fdfc8f745adbb150e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>CO 2 conversion</topic><topic>Conversion</topic><topic>Gallium</topic><topic>Liquid metals</topic><topic>Materials science</topic><topic>mechanical energy</topic><topic>Room temperature</topic><topic>Silver</topic><topic>triboelectrochemical reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Junma</creatorcontrib><creatorcontrib>Tang, Jianbo</creatorcontrib><creatorcontrib>Mayyas, Mohannad</creatorcontrib><creatorcontrib>Ghasemian, Mohammad B.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Rahim, Md Arifur</creatorcontrib><creatorcontrib>Yang, Jiong</creatorcontrib><creatorcontrib>Han, Jialuo</creatorcontrib><creatorcontrib>Lawes, Douglas J.</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>Saborio, Maricruz G.</creatorcontrib><creatorcontrib>Cao, Zhenbang</creatorcontrib><creatorcontrib>Echeverria, Claudia A.</creatorcontrib><creatorcontrib>Allioux, Francois‐Marie</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Hamilton, Jessica</creatorcontrib><creatorcontrib>Mitchell, Valerie</creatorcontrib><creatorcontrib>O'Mullane, Anthony P.</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><creatorcontrib>Esrafilzadeh, Dorna</creatorcontrib><creatorcontrib>Dickey, Michael D.</creatorcontrib><creatorcontrib>Kalantar‐Zadeh, Kourosh</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Junma</au><au>Tang, Jianbo</au><au>Mayyas, Mohannad</au><au>Ghasemian, Mohammad B.</au><au>Sun, Jing</au><au>Rahim, Md Arifur</au><au>Yang, Jiong</au><au>Han, Jialuo</au><au>Lawes, Douglas J.</au><au>Jalili, Rouhollah</au><au>Daeneke, Torben</au><au>Saborio, Maricruz G.</au><au>Cao, Zhenbang</au><au>Echeverria, Claudia A.</au><au>Allioux, Francois‐Marie</au><au>Zavabeti, Ali</au><au>Hamilton, Jessica</au><au>Mitchell, Valerie</au><au>O'Mullane, Anthony P.</au><au>Kaner, Richard B.</au><au>Esrafilzadeh, Dorna</au><au>Dickey, Michael D.</au><au>Kalantar‐Zadeh, Kourosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><spage>e2105789</spage><epage>n/a</epage><pages>e2105789-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co‐contributor of silver–gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano‐dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2) for the capture and conversion of a tonne of CO2. This green technology presents an economical solution for CO2 emissions.
With mechanical energy as the stimulus, CO2 is converted into solid carbon and O2 in a liquid‐metal‐based reaction system. Using the synergism of Ga nanodroplets and Ag–Ga nanorods, CO2 conversion proceeds through the triboelectrochemical reaction on Ga, while the Ag–Ga rods ensure the system's sustainability. This is achieved at a remarkably low energy consumption and high efficiency.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202105789</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-01, Vol.34 (1), p.e2105789-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2579632214 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon dioxide Carbon sequestration CO 2 conversion Conversion Gallium Liquid metals Materials science mechanical energy Room temperature Silver triboelectrochemical reactions |
title | Liquid‐Metal‐Enabled Mechanical‐Energy‐Induced CO2 Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%E2%80%90Metal%E2%80%90Enabled%20Mechanical%E2%80%90Energy%E2%80%90Induced%20CO2%20Conversion&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Tang,%20Junma&rft.date=2022-01-01&rft.volume=34&rft.issue=1&rft.spage=e2105789&rft.epage=n/a&rft.pages=e2105789-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202105789&rft_dat=%3Cproquest_wiley%3E2579632214%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617231558&rft_id=info:pmid/&rfr_iscdi=true |