Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks

Purpose To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images. Methods Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2022-02, Vol.87 (2), p.999-1014
Hauptverfasser: Xiao, Linfang, Liu, Yilong, Yi, Zheyuan, Zhao, Yujiao, Xie, Linshan, Cao, Peibei, Leong, Alex T. L., Wu, Ed X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1014
container_issue 2
container_start_page 999
container_title Magnetic resonance in medicine
container_volume 87
creator Xiao, Linfang
Liu, Yilong
Yi, Zheyuan
Zhao, Yujiao
Xie, Linshan
Cao, Peibei
Leong, Alex T. L.
Wu, Ed X.
description Purpose To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images. Methods Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐space for image reconstruction. However, this smooth phase constraint undermines the phase estimation accuracy in presence of rapid local phase variations, causing image artifacts and limiting the extent of PF reconstruction. Using both magnitude and phase characteristics in big complex image datasets, we propose a complex‐valued deep learning approach with an unrolled network architecture for PF reconstruction that iteratively reconstructs PF sampled data and enforces data consistency. We evaluate our approach for reconstructing both spin‐echo and gradient‐echo data. Results The proposed method outperformed the iterative POCS PF reconstruction method. It produced better artifact suppression and recovery of both image magnitude and phase details in presence of local phase changes. No noise amplification was observed even for highly PF reconstruction. Moreover, the network trained on axial brain data could reconstruct sagittal and coronal brain and knee data. This method could be extended to 2D PF reconstruction and joint multi‐slice PF reconstruction. Conclusion Our proposed method can effectively reconstruct MR data even at low PF fractions, yielding high‐fidelity magnitude and phase images. It presents a valuable alternative to conventional PF reconstruction, especially for phase‐sensitive 2D or 3D MRI applications.
doi_str_mv 10.1002/mrm.29033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579632036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579632036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-96edbec62262df7df96d810971c1f80f4d51aede643480067c9f0cb76d68a5183</originalsourceid><addsrcrecordid>eNp1kM1O3DAQgK0KVBbaQ1-gisQFDoHxT-z4iFb8VGJFtWrPUdae0NAkXux4t9z6CDwjT1LDshyQehpp9M2n0UfIFwonFICd9r4_YRo4_0AmtGAsZ4UWO2QCSkDOqRZ7ZD-EOwDQWomPZI8LSakGMSG_vtd-bOsuu3DRt-gzj8YNYfTRjK0bMtdkxvXLDv9ks3nW9vUthiyGdrjd7p_-Pq7qLqJNi2Hluvh8l4QDRv8yxrXzv8MnstvUXcDPr_OA_Lw4_zG9yq9vLr9Nz65zwwvOcy3RLtBIxiSzjbKNlrakoBU1tCmhEbagNVqUgosSQCqjGzALJa0s64KW_IAcbbxL7-4jhrHq22Cw6-oBXQwVK5SWnAGXCT18h96lCOn3RElgpeSqVIk63lDGuxA8NtXSpw7-oaJQPeevUv7qJX9iv74a46JH-0ZueyfgdAOs2w4f_m-qZvPZRvkPFcKQ-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602863787</pqid></control><display><type>article</type><title>Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Xiao, Linfang ; Liu, Yilong ; Yi, Zheyuan ; Zhao, Yujiao ; Xie, Linshan ; Cao, Peibei ; Leong, Alex T. L. ; Wu, Ed X.</creator><creatorcontrib>Xiao, Linfang ; Liu, Yilong ; Yi, Zheyuan ; Zhao, Yujiao ; Xie, Linshan ; Cao, Peibei ; Leong, Alex T. L. ; Wu, Ed X.</creatorcontrib><description>Purpose To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images. Methods Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐space for image reconstruction. However, this smooth phase constraint undermines the phase estimation accuracy in presence of rapid local phase variations, causing image artifacts and limiting the extent of PF reconstruction. Using both magnitude and phase characteristics in big complex image datasets, we propose a complex‐valued deep learning approach with an unrolled network architecture for PF reconstruction that iteratively reconstructs PF sampled data and enforces data consistency. We evaluate our approach for reconstructing both spin‐echo and gradient‐echo data. Results The proposed method outperformed the iterative POCS PF reconstruction method. It produced better artifact suppression and recovery of both image magnitude and phase details in presence of local phase changes. No noise amplification was observed even for highly PF reconstruction. Moreover, the network trained on axial brain data could reconstruct sagittal and coronal brain and knee data. This method could be extended to 2D PF reconstruction and joint multi‐slice PF reconstruction. Conclusion Our proposed method can effectively reconstruct MR data even at low PF fractions, yielding high‐fidelity magnitude and phase images. It presents a valuable alternative to conventional PF reconstruction, especially for phase‐sensitive 2D or 3D MRI applications.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29033</identifier><identifier>PMID: 34611904</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Brain ; complex‐valued network ; Computer architecture ; Convexity ; Deep learning ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Image reconstruction ; Magnetic Resonance Imaging ; Medical imaging ; Neural networks ; Neural Networks, Computer ; partial Fourier ; phase recovery ; Phase Variation ; Phase variations ; POCS ; SWI</subject><ispartof>Magnetic resonance in medicine, 2022-02, Vol.87 (2), p.999-1014</ispartof><rights>2021 International Society for Magnetic Resonance in Medicine</rights><rights>2021 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-96edbec62262df7df96d810971c1f80f4d51aede643480067c9f0cb76d68a5183</citedby><cites>FETCH-LOGICAL-c3533-96edbec62262df7df96d810971c1f80f4d51aede643480067c9f0cb76d68a5183</cites><orcidid>0000-0001-5581-1546 ; 0000-0001-9295-7982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.29033$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.29033$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34611904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Linfang</creatorcontrib><creatorcontrib>Liu, Yilong</creatorcontrib><creatorcontrib>Yi, Zheyuan</creatorcontrib><creatorcontrib>Zhao, Yujiao</creatorcontrib><creatorcontrib>Xie, Linshan</creatorcontrib><creatorcontrib>Cao, Peibei</creatorcontrib><creatorcontrib>Leong, Alex T. L.</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><title>Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images. Methods Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐space for image reconstruction. However, this smooth phase constraint undermines the phase estimation accuracy in presence of rapid local phase variations, causing image artifacts and limiting the extent of PF reconstruction. Using both magnitude and phase characteristics in big complex image datasets, we propose a complex‐valued deep learning approach with an unrolled network architecture for PF reconstruction that iteratively reconstructs PF sampled data and enforces data consistency. We evaluate our approach for reconstructing both spin‐echo and gradient‐echo data. Results The proposed method outperformed the iterative POCS PF reconstruction method. It produced better artifact suppression and recovery of both image magnitude and phase details in presence of local phase changes. No noise amplification was observed even for highly PF reconstruction. Moreover, the network trained on axial brain data could reconstruct sagittal and coronal brain and knee data. This method could be extended to 2D PF reconstruction and joint multi‐slice PF reconstruction. Conclusion Our proposed method can effectively reconstruct MR data even at low PF fractions, yielding high‐fidelity magnitude and phase images. It presents a valuable alternative to conventional PF reconstruction, especially for phase‐sensitive 2D or 3D MRI applications.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>complex‐valued network</subject><subject>Computer architecture</subject><subject>Convexity</subject><subject>Deep learning</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>partial Fourier</subject><subject>phase recovery</subject><subject>Phase Variation</subject><subject>Phase variations</subject><subject>POCS</subject><subject>SWI</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1O3DAQgK0KVBbaQ1-gisQFDoHxT-z4iFb8VGJFtWrPUdae0NAkXux4t9z6CDwjT1LDshyQehpp9M2n0UfIFwonFICd9r4_YRo4_0AmtGAsZ4UWO2QCSkDOqRZ7ZD-EOwDQWomPZI8LSakGMSG_vtd-bOsuu3DRt-gzj8YNYfTRjK0bMtdkxvXLDv9ks3nW9vUthiyGdrjd7p_-Pq7qLqJNi2Hluvh8l4QDRv8yxrXzv8MnstvUXcDPr_OA_Lw4_zG9yq9vLr9Nz65zwwvOcy3RLtBIxiSzjbKNlrakoBU1tCmhEbagNVqUgosSQCqjGzALJa0s64KW_IAcbbxL7-4jhrHq22Cw6-oBXQwVK5SWnAGXCT18h96lCOn3RElgpeSqVIk63lDGuxA8NtXSpw7-oaJQPeevUv7qJX9iv74a46JH-0ZueyfgdAOs2w4f_m-qZvPZRvkPFcKQ-w</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Xiao, Linfang</creator><creator>Liu, Yilong</creator><creator>Yi, Zheyuan</creator><creator>Zhao, Yujiao</creator><creator>Xie, Linshan</creator><creator>Cao, Peibei</creator><creator>Leong, Alex T. L.</creator><creator>Wu, Ed X.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5581-1546</orcidid><orcidid>https://orcid.org/0000-0001-9295-7982</orcidid></search><sort><creationdate>202202</creationdate><title>Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks</title><author>Xiao, Linfang ; Liu, Yilong ; Yi, Zheyuan ; Zhao, Yujiao ; Xie, Linshan ; Cao, Peibei ; Leong, Alex T. L. ; Wu, Ed X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-96edbec62262df7df96d810971c1f80f4d51aede643480067c9f0cb76d68a5183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>complex‐valued network</topic><topic>Computer architecture</topic><topic>Convexity</topic><topic>Deep learning</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>partial Fourier</topic><topic>phase recovery</topic><topic>Phase Variation</topic><topic>Phase variations</topic><topic>POCS</topic><topic>SWI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Linfang</creatorcontrib><creatorcontrib>Liu, Yilong</creatorcontrib><creatorcontrib>Yi, Zheyuan</creatorcontrib><creatorcontrib>Zhao, Yujiao</creatorcontrib><creatorcontrib>Xie, Linshan</creatorcontrib><creatorcontrib>Cao, Peibei</creatorcontrib><creatorcontrib>Leong, Alex T. L.</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Linfang</au><au>Liu, Yilong</au><au>Yi, Zheyuan</au><au>Zhao, Yujiao</au><au>Xie, Linshan</au><au>Cao, Peibei</au><au>Leong, Alex T. L.</au><au>Wu, Ed X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2022-02</date><risdate>2022</risdate><volume>87</volume><issue>2</issue><spage>999</spage><epage>1014</epage><pages>999-1014</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images. Methods Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐space for image reconstruction. However, this smooth phase constraint undermines the phase estimation accuracy in presence of rapid local phase variations, causing image artifacts and limiting the extent of PF reconstruction. Using both magnitude and phase characteristics in big complex image datasets, we propose a complex‐valued deep learning approach with an unrolled network architecture for PF reconstruction that iteratively reconstructs PF sampled data and enforces data consistency. We evaluate our approach for reconstructing both spin‐echo and gradient‐echo data. Results The proposed method outperformed the iterative POCS PF reconstruction method. It produced better artifact suppression and recovery of both image magnitude and phase details in presence of local phase changes. No noise amplification was observed even for highly PF reconstruction. Moreover, the network trained on axial brain data could reconstruct sagittal and coronal brain and knee data. This method could be extended to 2D PF reconstruction and joint multi‐slice PF reconstruction. Conclusion Our proposed method can effectively reconstruct MR data even at low PF fractions, yielding high‐fidelity magnitude and phase images. It presents a valuable alternative to conventional PF reconstruction, especially for phase‐sensitive 2D or 3D MRI applications.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34611904</pmid><doi>10.1002/mrm.29033</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0001-5581-1546</orcidid><orcidid>https://orcid.org/0000-0001-9295-7982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2022-02, Vol.87 (2), p.999-1014
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2579632036
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Artificial neural networks
Brain
complex‐valued network
Computer architecture
Convexity
Deep learning
Humans
Image processing
Image Processing, Computer-Assisted
Image reconstruction
Magnetic Resonance Imaging
Medical imaging
Neural networks
Neural Networks, Computer
partial Fourier
phase recovery
Phase Variation
Phase variations
POCS
SWI
title Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Fourier%20reconstruction%20of%20complex%20MR%20images%20using%20complex%E2%80%90valued%20convolutional%20neural%20networks&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Xiao,%20Linfang&rft.date=2022-02&rft.volume=87&rft.issue=2&rft.spage=999&rft.epage=1014&rft.pages=999-1014&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29033&rft_dat=%3Cproquest_cross%3E2579632036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602863787&rft_id=info:pmid/34611904&rfr_iscdi=true