Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks
Purpose To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images. Methods Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐sp...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2022-02, Vol.87 (2), p.999-1014 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1014 |
---|---|
container_issue | 2 |
container_start_page | 999 |
container_title | Magnetic resonance in medicine |
container_volume | 87 |
creator | Xiao, Linfang Liu, Yilong Yi, Zheyuan Zhao, Yujiao Xie, Linshan Cao, Peibei Leong, Alex T. L. Wu, Ed X. |
description | Purpose
To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images.
Methods
Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐space for image reconstruction. However, this smooth phase constraint undermines the phase estimation accuracy in presence of rapid local phase variations, causing image artifacts and limiting the extent of PF reconstruction. Using both magnitude and phase characteristics in big complex image datasets, we propose a complex‐valued deep learning approach with an unrolled network architecture for PF reconstruction that iteratively reconstructs PF sampled data and enforces data consistency. We evaluate our approach for reconstructing both spin‐echo and gradient‐echo data.
Results
The proposed method outperformed the iterative POCS PF reconstruction method. It produced better artifact suppression and recovery of both image magnitude and phase details in presence of local phase changes. No noise amplification was observed even for highly PF reconstruction. Moreover, the network trained on axial brain data could reconstruct sagittal and coronal brain and knee data. This method could be extended to 2D PF reconstruction and joint multi‐slice PF reconstruction.
Conclusion
Our proposed method can effectively reconstruct MR data even at low PF fractions, yielding high‐fidelity magnitude and phase images. It presents a valuable alternative to conventional PF reconstruction, especially for phase‐sensitive 2D or 3D MRI applications. |
doi_str_mv | 10.1002/mrm.29033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579632036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579632036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-96edbec62262df7df96d810971c1f80f4d51aede643480067c9f0cb76d68a5183</originalsourceid><addsrcrecordid>eNp1kM1O3DAQgK0KVBbaQ1-gisQFDoHxT-z4iFb8VGJFtWrPUdae0NAkXux4t9z6CDwjT1LDshyQehpp9M2n0UfIFwonFICd9r4_YRo4_0AmtGAsZ4UWO2QCSkDOqRZ7ZD-EOwDQWomPZI8LSakGMSG_vtd-bOsuu3DRt-gzj8YNYfTRjK0bMtdkxvXLDv9ks3nW9vUthiyGdrjd7p_-Pq7qLqJNi2Hluvh8l4QDRv8yxrXzv8MnstvUXcDPr_OA_Lw4_zG9yq9vLr9Nz65zwwvOcy3RLtBIxiSzjbKNlrakoBU1tCmhEbagNVqUgosSQCqjGzALJa0s64KW_IAcbbxL7-4jhrHq22Cw6-oBXQwVK5SWnAGXCT18h96lCOn3RElgpeSqVIk63lDGuxA8NtXSpw7-oaJQPeevUv7qJX9iv74a46JH-0ZueyfgdAOs2w4f_m-qZvPZRvkPFcKQ-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602863787</pqid></control><display><type>article</type><title>Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Xiao, Linfang ; Liu, Yilong ; Yi, Zheyuan ; Zhao, Yujiao ; Xie, Linshan ; Cao, Peibei ; Leong, Alex T. L. ; Wu, Ed X.</creator><creatorcontrib>Xiao, Linfang ; Liu, Yilong ; Yi, Zheyuan ; Zhao, Yujiao ; Xie, Linshan ; Cao, Peibei ; Leong, Alex T. L. ; Wu, Ed X.</creatorcontrib><description>Purpose
To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images.
Methods
Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐space for image reconstruction. However, this smooth phase constraint undermines the phase estimation accuracy in presence of rapid local phase variations, causing image artifacts and limiting the extent of PF reconstruction. Using both magnitude and phase characteristics in big complex image datasets, we propose a complex‐valued deep learning approach with an unrolled network architecture for PF reconstruction that iteratively reconstructs PF sampled data and enforces data consistency. We evaluate our approach for reconstructing both spin‐echo and gradient‐echo data.
Results
The proposed method outperformed the iterative POCS PF reconstruction method. It produced better artifact suppression and recovery of both image magnitude and phase details in presence of local phase changes. No noise amplification was observed even for highly PF reconstruction. Moreover, the network trained on axial brain data could reconstruct sagittal and coronal brain and knee data. This method could be extended to 2D PF reconstruction and joint multi‐slice PF reconstruction.
Conclusion
Our proposed method can effectively reconstruct MR data even at low PF fractions, yielding high‐fidelity magnitude and phase images. It presents a valuable alternative to conventional PF reconstruction, especially for phase‐sensitive 2D or 3D MRI applications.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29033</identifier><identifier>PMID: 34611904</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Brain ; complex‐valued network ; Computer architecture ; Convexity ; Deep learning ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Image reconstruction ; Magnetic Resonance Imaging ; Medical imaging ; Neural networks ; Neural Networks, Computer ; partial Fourier ; phase recovery ; Phase Variation ; Phase variations ; POCS ; SWI</subject><ispartof>Magnetic resonance in medicine, 2022-02, Vol.87 (2), p.999-1014</ispartof><rights>2021 International Society for Magnetic Resonance in Medicine</rights><rights>2021 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-96edbec62262df7df96d810971c1f80f4d51aede643480067c9f0cb76d68a5183</citedby><cites>FETCH-LOGICAL-c3533-96edbec62262df7df96d810971c1f80f4d51aede643480067c9f0cb76d68a5183</cites><orcidid>0000-0001-5581-1546 ; 0000-0001-9295-7982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.29033$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.29033$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34611904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Linfang</creatorcontrib><creatorcontrib>Liu, Yilong</creatorcontrib><creatorcontrib>Yi, Zheyuan</creatorcontrib><creatorcontrib>Zhao, Yujiao</creatorcontrib><creatorcontrib>Xie, Linshan</creatorcontrib><creatorcontrib>Cao, Peibei</creatorcontrib><creatorcontrib>Leong, Alex T. L.</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><title>Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images.
Methods
Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐space for image reconstruction. However, this smooth phase constraint undermines the phase estimation accuracy in presence of rapid local phase variations, causing image artifacts and limiting the extent of PF reconstruction. Using both magnitude and phase characteristics in big complex image datasets, we propose a complex‐valued deep learning approach with an unrolled network architecture for PF reconstruction that iteratively reconstructs PF sampled data and enforces data consistency. We evaluate our approach for reconstructing both spin‐echo and gradient‐echo data.
Results
The proposed method outperformed the iterative POCS PF reconstruction method. It produced better artifact suppression and recovery of both image magnitude and phase details in presence of local phase changes. No noise amplification was observed even for highly PF reconstruction. Moreover, the network trained on axial brain data could reconstruct sagittal and coronal brain and knee data. This method could be extended to 2D PF reconstruction and joint multi‐slice PF reconstruction.
Conclusion
Our proposed method can effectively reconstruct MR data even at low PF fractions, yielding high‐fidelity magnitude and phase images. It presents a valuable alternative to conventional PF reconstruction, especially for phase‐sensitive 2D or 3D MRI applications.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>complex‐valued network</subject><subject>Computer architecture</subject><subject>Convexity</subject><subject>Deep learning</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>partial Fourier</subject><subject>phase recovery</subject><subject>Phase Variation</subject><subject>Phase variations</subject><subject>POCS</subject><subject>SWI</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1O3DAQgK0KVBbaQ1-gisQFDoHxT-z4iFb8VGJFtWrPUdae0NAkXux4t9z6CDwjT1LDshyQehpp9M2n0UfIFwonFICd9r4_YRo4_0AmtGAsZ4UWO2QCSkDOqRZ7ZD-EOwDQWomPZI8LSakGMSG_vtd-bOsuu3DRt-gzj8YNYfTRjK0bMtdkxvXLDv9ks3nW9vUthiyGdrjd7p_-Pq7qLqJNi2Hluvh8l4QDRv8yxrXzv8MnstvUXcDPr_OA_Lw4_zG9yq9vLr9Nz65zwwvOcy3RLtBIxiSzjbKNlrakoBU1tCmhEbagNVqUgosSQCqjGzALJa0s64KW_IAcbbxL7-4jhrHq22Cw6-oBXQwVK5SWnAGXCT18h96lCOn3RElgpeSqVIk63lDGuxA8NtXSpw7-oaJQPeevUv7qJX9iv74a46JH-0ZueyfgdAOs2w4f_m-qZvPZRvkPFcKQ-w</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Xiao, Linfang</creator><creator>Liu, Yilong</creator><creator>Yi, Zheyuan</creator><creator>Zhao, Yujiao</creator><creator>Xie, Linshan</creator><creator>Cao, Peibei</creator><creator>Leong, Alex T. L.</creator><creator>Wu, Ed X.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5581-1546</orcidid><orcidid>https://orcid.org/0000-0001-9295-7982</orcidid></search><sort><creationdate>202202</creationdate><title>Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks</title><author>Xiao, Linfang ; Liu, Yilong ; Yi, Zheyuan ; Zhao, Yujiao ; Xie, Linshan ; Cao, Peibei ; Leong, Alex T. L. ; Wu, Ed X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-96edbec62262df7df96d810971c1f80f4d51aede643480067c9f0cb76d68a5183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>complex‐valued network</topic><topic>Computer architecture</topic><topic>Convexity</topic><topic>Deep learning</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>partial Fourier</topic><topic>phase recovery</topic><topic>Phase Variation</topic><topic>Phase variations</topic><topic>POCS</topic><topic>SWI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Linfang</creatorcontrib><creatorcontrib>Liu, Yilong</creatorcontrib><creatorcontrib>Yi, Zheyuan</creatorcontrib><creatorcontrib>Zhao, Yujiao</creatorcontrib><creatorcontrib>Xie, Linshan</creatorcontrib><creatorcontrib>Cao, Peibei</creatorcontrib><creatorcontrib>Leong, Alex T. L.</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Linfang</au><au>Liu, Yilong</au><au>Yi, Zheyuan</au><au>Zhao, Yujiao</au><au>Xie, Linshan</au><au>Cao, Peibei</au><au>Leong, Alex T. L.</au><au>Wu, Ed X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2022-02</date><risdate>2022</risdate><volume>87</volume><issue>2</issue><spage>999</spage><epage>1014</epage><pages>999-1014</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To provide a complex‐valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images.
Methods
Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low‐resolution image phase information from the central symmetrically sampled k‐space for image reconstruction. However, this smooth phase constraint undermines the phase estimation accuracy in presence of rapid local phase variations, causing image artifacts and limiting the extent of PF reconstruction. Using both magnitude and phase characteristics in big complex image datasets, we propose a complex‐valued deep learning approach with an unrolled network architecture for PF reconstruction that iteratively reconstructs PF sampled data and enforces data consistency. We evaluate our approach for reconstructing both spin‐echo and gradient‐echo data.
Results
The proposed method outperformed the iterative POCS PF reconstruction method. It produced better artifact suppression and recovery of both image magnitude and phase details in presence of local phase changes. No noise amplification was observed even for highly PF reconstruction. Moreover, the network trained on axial brain data could reconstruct sagittal and coronal brain and knee data. This method could be extended to 2D PF reconstruction and joint multi‐slice PF reconstruction.
Conclusion
Our proposed method can effectively reconstruct MR data even at low PF fractions, yielding high‐fidelity magnitude and phase images. It presents a valuable alternative to conventional PF reconstruction, especially for phase‐sensitive 2D or 3D MRI applications.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34611904</pmid><doi>10.1002/mrm.29033</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0001-5581-1546</orcidid><orcidid>https://orcid.org/0000-0001-9295-7982</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2022-02, Vol.87 (2), p.999-1014 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2579632036 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Algorithms Artificial neural networks Brain complex‐valued network Computer architecture Convexity Deep learning Humans Image processing Image Processing, Computer-Assisted Image reconstruction Magnetic Resonance Imaging Medical imaging Neural networks Neural Networks, Computer partial Fourier phase recovery Phase Variation Phase variations POCS SWI |
title | Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Fourier%20reconstruction%20of%20complex%20MR%20images%20using%20complex%E2%80%90valued%20convolutional%20neural%20networks&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Xiao,%20Linfang&rft.date=2022-02&rft.volume=87&rft.issue=2&rft.spage=999&rft.epage=1014&rft.pages=999-1014&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29033&rft_dat=%3Cproquest_cross%3E2579632036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602863787&rft_id=info:pmid/34611904&rfr_iscdi=true |