PointCartesian-Net: enhancing 3D coordinates for semantic segmentation of large-scale point clouds

Collecting accurate outdoor point cloud data depends on complex algorithms and expensive experimental equipment. The requirement of data collecting and the characteristics of point clouds limit the development of semantic segmentation technology in point clouds. Therefore, this paper proposes a neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2021-08, Vol.38 (8), p.1194-1200
Hauptverfasser: Zhou, Yuan, Sun, Qi, Meng, Jin, Hu, Qinglong, Lyu, Jiahang, Wang, Zhiwei, Wang, Shifeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1200
container_issue 8
container_start_page 1194
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 38
creator Zhou, Yuan
Sun, Qi
Meng, Jin
Hu, Qinglong
Lyu, Jiahang
Wang, Zhiwei
Wang, Shifeng
description Collecting accurate outdoor point cloud data depends on complex algorithms and expensive experimental equipment. The requirement of data collecting and the characteristics of point clouds limit the development of semantic segmentation technology in point clouds. Therefore, this paper proposes a neural network model named PointCartesian-Net that uses only 3D coordinates of point cloud data for semantic segmentation. First, to increase the feature information and reduce the loss of geometric information, the 3D coordinates are encoded to establish a connection between neighboring points. Second, a dense connect and residual connect are employed to progressively increase the receptive field for each 3D point, and aggregated multi-level and multi-scale semantic features obtain rich contextual information. Third, inspired by the success of the SENet model in 2D images, a 3D SENet that learns the relation between the characteristic channels is proposed. It allows the PointCartesian-Net to weight the informative features while suppressing less useful ones. The experimental results produce 60.2% Mean Intersection-over-Union and 89.1% overall accuracy on the large-scale benchmark Semantic3D dataset, which shows the feasibility and applicability of the network.
doi_str_mv 10.1364/JOSAA.425341
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579630945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579630945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ae13117c5c3eaef89605da83b8670e14ad121c2889894e20c1e826ae9e226f753</originalsourceid><addsrcrecordid>eNotkLlOAzEURS0EEmHp-ACXFEzwPh66KOyKCBJQj148b4LRxA62U_D3JITq3uLoFIeQC87GXBp1_Tx_m0zGSmip-AEZcS1YZbUUh9vPrKpqLZpjcpLzF2NMGVuPyOI1-lCmkApmD6F6wXJDMXxCcD4sqbylLsbU-QBbgPYx0YwrCMW77VmuMBQoPgYaezpAWmKVHQxI1zsrdUPcdPmMHPUwZDz_31PycX_3Pn2sZvOHp-lkVjlhbKkAueS8dtpJBOxtY5juwMqFNTVDrqDjgjthbWMbhYI5jlYYwAaFMH2t5Sm53HvXKX5vMJd25bPDYYCAcZNboevGSNaoHXq1R12KOSfs23XyK0g_LWftLmX7l7Ldp5S_YeZnLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579630945</pqid></control><display><type>article</type><title>PointCartesian-Net: enhancing 3D coordinates for semantic segmentation of large-scale point clouds</title><source>Optica Publishing Group Journals</source><creator>Zhou, Yuan ; Sun, Qi ; Meng, Jin ; Hu, Qinglong ; Lyu, Jiahang ; Wang, Zhiwei ; Wang, Shifeng</creator><creatorcontrib>Zhou, Yuan ; Sun, Qi ; Meng, Jin ; Hu, Qinglong ; Lyu, Jiahang ; Wang, Zhiwei ; Wang, Shifeng</creatorcontrib><description>Collecting accurate outdoor point cloud data depends on complex algorithms and expensive experimental equipment. The requirement of data collecting and the characteristics of point clouds limit the development of semantic segmentation technology in point clouds. Therefore, this paper proposes a neural network model named PointCartesian-Net that uses only 3D coordinates of point cloud data for semantic segmentation. First, to increase the feature information and reduce the loss of geometric information, the 3D coordinates are encoded to establish a connection between neighboring points. Second, a dense connect and residual connect are employed to progressively increase the receptive field for each 3D point, and aggregated multi-level and multi-scale semantic features obtain rich contextual information. Third, inspired by the success of the SENet model in 2D images, a 3D SENet that learns the relation between the characteristic channels is proposed. It allows the PointCartesian-Net to weight the informative features while suppressing less useful ones. The experimental results produce 60.2% Mean Intersection-over-Union and 89.1% overall accuracy on the large-scale benchmark Semantic3D dataset, which shows the feasibility and applicability of the network.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.425341</identifier><language>eng</language><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2021-08, Vol.38 (8), p.1194-1200</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-ae13117c5c3eaef89605da83b8670e14ad121c2889894e20c1e826ae9e226f753</citedby><cites>FETCH-LOGICAL-c268t-ae13117c5c3eaef89605da83b8670e14ad121c2889894e20c1e826ae9e226f753</cites><orcidid>0000-0002-6175-0230 ; 0000-0002-1626-4698 ; 0000-0002-8871-1100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3244,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhou, Yuan</creatorcontrib><creatorcontrib>Sun, Qi</creatorcontrib><creatorcontrib>Meng, Jin</creatorcontrib><creatorcontrib>Hu, Qinglong</creatorcontrib><creatorcontrib>Lyu, Jiahang</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Wang, Shifeng</creatorcontrib><title>PointCartesian-Net: enhancing 3D coordinates for semantic segmentation of large-scale point clouds</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><description>Collecting accurate outdoor point cloud data depends on complex algorithms and expensive experimental equipment. The requirement of data collecting and the characteristics of point clouds limit the development of semantic segmentation technology in point clouds. Therefore, this paper proposes a neural network model named PointCartesian-Net that uses only 3D coordinates of point cloud data for semantic segmentation. First, to increase the feature information and reduce the loss of geometric information, the 3D coordinates are encoded to establish a connection between neighboring points. Second, a dense connect and residual connect are employed to progressively increase the receptive field for each 3D point, and aggregated multi-level and multi-scale semantic features obtain rich contextual information. Third, inspired by the success of the SENet model in 2D images, a 3D SENet that learns the relation between the characteristic channels is proposed. It allows the PointCartesian-Net to weight the informative features while suppressing less useful ones. The experimental results produce 60.2% Mean Intersection-over-Union and 89.1% overall accuracy on the large-scale benchmark Semantic3D dataset, which shows the feasibility and applicability of the network.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkLlOAzEURS0EEmHp-ACXFEzwPh66KOyKCBJQj148b4LRxA62U_D3JITq3uLoFIeQC87GXBp1_Tx_m0zGSmip-AEZcS1YZbUUh9vPrKpqLZpjcpLzF2NMGVuPyOI1-lCmkApmD6F6wXJDMXxCcD4sqbylLsbU-QBbgPYx0YwrCMW77VmuMBQoPgYaezpAWmKVHQxI1zsrdUPcdPmMHPUwZDz_31PycX_3Pn2sZvOHp-lkVjlhbKkAueS8dtpJBOxtY5juwMqFNTVDrqDjgjthbWMbhYI5jlYYwAaFMH2t5Sm53HvXKX5vMJd25bPDYYCAcZNboevGSNaoHXq1R12KOSfs23XyK0g_LWftLmX7l7Ldp5S_YeZnLA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhou, Yuan</creator><creator>Sun, Qi</creator><creator>Meng, Jin</creator><creator>Hu, Qinglong</creator><creator>Lyu, Jiahang</creator><creator>Wang, Zhiwei</creator><creator>Wang, Shifeng</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6175-0230</orcidid><orcidid>https://orcid.org/0000-0002-1626-4698</orcidid><orcidid>https://orcid.org/0000-0002-8871-1100</orcidid></search><sort><creationdate>20210801</creationdate><title>PointCartesian-Net: enhancing 3D coordinates for semantic segmentation of large-scale point clouds</title><author>Zhou, Yuan ; Sun, Qi ; Meng, Jin ; Hu, Qinglong ; Lyu, Jiahang ; Wang, Zhiwei ; Wang, Shifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ae13117c5c3eaef89605da83b8670e14ad121c2889894e20c1e826ae9e226f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yuan</creatorcontrib><creatorcontrib>Sun, Qi</creatorcontrib><creatorcontrib>Meng, Jin</creatorcontrib><creatorcontrib>Hu, Qinglong</creatorcontrib><creatorcontrib>Lyu, Jiahang</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Wang, Shifeng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yuan</au><au>Sun, Qi</au><au>Meng, Jin</au><au>Hu, Qinglong</au><au>Lyu, Jiahang</au><au>Wang, Zhiwei</au><au>Wang, Shifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PointCartesian-Net: enhancing 3D coordinates for semantic segmentation of large-scale point clouds</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>38</volume><issue>8</issue><spage>1194</spage><epage>1200</epage><pages>1194-1200</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>Collecting accurate outdoor point cloud data depends on complex algorithms and expensive experimental equipment. The requirement of data collecting and the characteristics of point clouds limit the development of semantic segmentation technology in point clouds. Therefore, this paper proposes a neural network model named PointCartesian-Net that uses only 3D coordinates of point cloud data for semantic segmentation. First, to increase the feature information and reduce the loss of geometric information, the 3D coordinates are encoded to establish a connection between neighboring points. Second, a dense connect and residual connect are employed to progressively increase the receptive field for each 3D point, and aggregated multi-level and multi-scale semantic features obtain rich contextual information. Third, inspired by the success of the SENet model in 2D images, a 3D SENet that learns the relation between the characteristic channels is proposed. It allows the PointCartesian-Net to weight the informative features while suppressing less useful ones. The experimental results produce 60.2% Mean Intersection-over-Union and 89.1% overall accuracy on the large-scale benchmark Semantic3D dataset, which shows the feasibility and applicability of the network.</abstract><doi>10.1364/JOSAA.425341</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6175-0230</orcidid><orcidid>https://orcid.org/0000-0002-1626-4698</orcidid><orcidid>https://orcid.org/0000-0002-8871-1100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2021-08, Vol.38 (8), p.1194-1200
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_2579630945
source Optica Publishing Group Journals
title PointCartesian-Net: enhancing 3D coordinates for semantic segmentation of large-scale point clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PointCartesian-Net:%20enhancing%203D%20coordinates%20for%20semantic%20segmentation%20of%20large-scale%20point%20clouds&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Zhou,%20Yuan&rft.date=2021-08-01&rft.volume=38&rft.issue=8&rft.spage=1194&rft.epage=1200&rft.pages=1194-1200&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.425341&rft_dat=%3Cproquest_cross%3E2579630945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579630945&rft_id=info:pmid/&rfr_iscdi=true