Antiderivative of gradient data by spline model integration
Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spli...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2021-08, Vol.38 (8), p.1187-1193 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1193 |
---|---|
container_issue | 8 |
container_start_page | 1187 |
container_title | Journal of the Optical Society of America. A, Optics, image science, and vision |
container_volume | 38 |
creator | Badar, Irfan Yang, Liangxin Hellmann, Christian Wyrowski, Frank |
description | Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spline model function-based integration technique that can construct original functions from irregularly measured gradient data over general shape domains with high accuracy and speed. |
doi_str_mv | 10.1364/JOSAA.430638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579630920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579630920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4cdf58c3c4cc72d83532d95f61cf0c3fb6f996c7eaa16786847b4320747e6d5f3</originalsourceid><addsrcrecordid>eNotkEtLAzEYRYMoWKs7f0CWLpyayXtwNRSfFLpQ1yFNvkhkOlOTtNB_7-i4undxuFwOQtc1WdRM8rvX9VvbLjgjkukTNKsFJZUWjJ6OnWheKUGbc3SR8xchhEutZui-7Uv0kOLBlngAPAT8mayP0BfsbbF4c8R518Ue8Hbw0OHYFxiJEof-Ep0F22W4-s85-nh8eF8-V6v108uyXVWOSl0q7nwQ2jHHnVPUazY-8o0IsnaBOBY2MjSNdAqsraXSUnO14YwSxRVILwKbo5tpd5eG7z3kYrYxO-g628Owz4YK1UhGGkpG9HZCXRpyThDMLsWtTUdTE_PryPw5MpMj9gOeeFlX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579630920</pqid></control><display><type>article</type><title>Antiderivative of gradient data by spline model integration</title><source>Optica Publishing Group Journals</source><creator>Badar, Irfan ; Yang, Liangxin ; Hellmann, Christian ; Wyrowski, Frank</creator><creatorcontrib>Badar, Irfan ; Yang, Liangxin ; Hellmann, Christian ; Wyrowski, Frank</creatorcontrib><description>Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spline model function-based integration technique that can construct original functions from irregularly measured gradient data over general shape domains with high accuracy and speed.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.430638</identifier><language>eng</language><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2021-08, Vol.38 (8), p.1187-1193</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-4cdf58c3c4cc72d83532d95f61cf0c3fb6f996c7eaa16786847b4320747e6d5f3</citedby><cites>FETCH-LOGICAL-c268t-4cdf58c3c4cc72d83532d95f61cf0c3fb6f996c7eaa16786847b4320747e6d5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids></links><search><creatorcontrib>Badar, Irfan</creatorcontrib><creatorcontrib>Yang, Liangxin</creatorcontrib><creatorcontrib>Hellmann, Christian</creatorcontrib><creatorcontrib>Wyrowski, Frank</creatorcontrib><title>Antiderivative of gradient data by spline model integration</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><description>Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spline model function-based integration technique that can construct original functions from irregularly measured gradient data over general shape domains with high accuracy and speed.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEYRYMoWKs7f0CWLpyayXtwNRSfFLpQ1yFNvkhkOlOTtNB_7-i4undxuFwOQtc1WdRM8rvX9VvbLjgjkukTNKsFJZUWjJ6OnWheKUGbc3SR8xchhEutZui-7Uv0kOLBlngAPAT8mayP0BfsbbF4c8R518Ue8Hbw0OHYFxiJEof-Ep0F22W4-s85-nh8eF8-V6v108uyXVWOSl0q7nwQ2jHHnVPUazY-8o0IsnaBOBY2MjSNdAqsraXSUnO14YwSxRVILwKbo5tpd5eG7z3kYrYxO-g628Owz4YK1UhGGkpG9HZCXRpyThDMLsWtTUdTE_PryPw5MpMj9gOeeFlX</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Badar, Irfan</creator><creator>Yang, Liangxin</creator><creator>Hellmann, Christian</creator><creator>Wyrowski, Frank</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210801</creationdate><title>Antiderivative of gradient data by spline model integration</title><author>Badar, Irfan ; Yang, Liangxin ; Hellmann, Christian ; Wyrowski, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4cdf58c3c4cc72d83532d95f61cf0c3fb6f996c7eaa16786847b4320747e6d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badar, Irfan</creatorcontrib><creatorcontrib>Yang, Liangxin</creatorcontrib><creatorcontrib>Hellmann, Christian</creatorcontrib><creatorcontrib>Wyrowski, Frank</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badar, Irfan</au><au>Yang, Liangxin</au><au>Hellmann, Christian</au><au>Wyrowski, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiderivative of gradient data by spline model integration</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>38</volume><issue>8</issue><spage>1187</spage><epage>1193</epage><pages>1187-1193</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spline model function-based integration technique that can construct original functions from irregularly measured gradient data over general shape domains with high accuracy and speed.</abstract><doi>10.1364/JOSAA.430638</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | Journal of the Optical Society of America. A, Optics, image science, and vision, 2021-08, Vol.38 (8), p.1187-1193 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_proquest_miscellaneous_2579630920 |
source | Optica Publishing Group Journals |
title | Antiderivative of gradient data by spline model integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiderivative%20of%20gradient%20data%20by%20spline%20model%20integration&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Badar,%20Irfan&rft.date=2021-08-01&rft.volume=38&rft.issue=8&rft.spage=1187&rft.epage=1193&rft.pages=1187-1193&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.430638&rft_dat=%3Cproquest_cross%3E2579630920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579630920&rft_id=info:pmid/&rfr_iscdi=true |