Antiderivative of gradient data by spline model integration

Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2021-08, Vol.38 (8), p.1187-1193
Hauptverfasser: Badar, Irfan, Yang, Liangxin, Hellmann, Christian, Wyrowski, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1193
container_issue 8
container_start_page 1187
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 38
creator Badar, Irfan
Yang, Liangxin
Hellmann, Christian
Wyrowski, Frank
description Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spline model function-based integration technique that can construct original functions from irregularly measured gradient data over general shape domains with high accuracy and speed.
doi_str_mv 10.1364/JOSAA.430638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579630920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579630920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4cdf58c3c4cc72d83532d95f61cf0c3fb6f996c7eaa16786847b4320747e6d5f3</originalsourceid><addsrcrecordid>eNotkEtLAzEYRYMoWKs7f0CWLpyayXtwNRSfFLpQ1yFNvkhkOlOTtNB_7-i4undxuFwOQtc1WdRM8rvX9VvbLjgjkukTNKsFJZUWjJ6OnWheKUGbc3SR8xchhEutZui-7Uv0kOLBlngAPAT8mayP0BfsbbF4c8R518Ue8Hbw0OHYFxiJEof-Ep0F22W4-s85-nh8eF8-V6v108uyXVWOSl0q7nwQ2jHHnVPUazY-8o0IsnaBOBY2MjSNdAqsraXSUnO14YwSxRVILwKbo5tpd5eG7z3kYrYxO-g628Owz4YK1UhGGkpG9HZCXRpyThDMLsWtTUdTE_PryPw5MpMj9gOeeFlX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579630920</pqid></control><display><type>article</type><title>Antiderivative of gradient data by spline model integration</title><source>Optica Publishing Group Journals</source><creator>Badar, Irfan ; Yang, Liangxin ; Hellmann, Christian ; Wyrowski, Frank</creator><creatorcontrib>Badar, Irfan ; Yang, Liangxin ; Hellmann, Christian ; Wyrowski, Frank</creatorcontrib><description>Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spline model function-based integration technique that can construct original functions from irregularly measured gradient data over general shape domains with high accuracy and speed.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.430638</identifier><language>eng</language><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2021-08, Vol.38 (8), p.1187-1193</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-4cdf58c3c4cc72d83532d95f61cf0c3fb6f996c7eaa16786847b4320747e6d5f3</citedby><cites>FETCH-LOGICAL-c268t-4cdf58c3c4cc72d83532d95f61cf0c3fb6f996c7eaa16786847b4320747e6d5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids></links><search><creatorcontrib>Badar, Irfan</creatorcontrib><creatorcontrib>Yang, Liangxin</creatorcontrib><creatorcontrib>Hellmann, Christian</creatorcontrib><creatorcontrib>Wyrowski, Frank</creatorcontrib><title>Antiderivative of gradient data by spline model integration</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><description>Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spline model function-based integration technique that can construct original functions from irregularly measured gradient data over general shape domains with high accuracy and speed.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEYRYMoWKs7f0CWLpyayXtwNRSfFLpQ1yFNvkhkOlOTtNB_7-i4undxuFwOQtc1WdRM8rvX9VvbLjgjkukTNKsFJZUWjJ6OnWheKUGbc3SR8xchhEutZui-7Uv0kOLBlngAPAT8mayP0BfsbbF4c8R518Ue8Hbw0OHYFxiJEof-Ep0F22W4-s85-nh8eF8-V6v108uyXVWOSl0q7nwQ2jHHnVPUazY-8o0IsnaBOBY2MjSNdAqsraXSUnO14YwSxRVILwKbo5tpd5eG7z3kYrYxO-g628Owz4YK1UhGGkpG9HZCXRpyThDMLsWtTUdTE_PryPw5MpMj9gOeeFlX</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Badar, Irfan</creator><creator>Yang, Liangxin</creator><creator>Hellmann, Christian</creator><creator>Wyrowski, Frank</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210801</creationdate><title>Antiderivative of gradient data by spline model integration</title><author>Badar, Irfan ; Yang, Liangxin ; Hellmann, Christian ; Wyrowski, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4cdf58c3c4cc72d83532d95f61cf0c3fb6f996c7eaa16786847b4320747e6d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badar, Irfan</creatorcontrib><creatorcontrib>Yang, Liangxin</creatorcontrib><creatorcontrib>Hellmann, Christian</creatorcontrib><creatorcontrib>Wyrowski, Frank</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badar, Irfan</au><au>Yang, Liangxin</au><au>Hellmann, Christian</au><au>Wyrowski, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiderivative of gradient data by spline model integration</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>38</volume><issue>8</issue><spage>1187</spage><epage>1193</epage><pages>1187-1193</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>Numerous optical techniques describe the local slope of the functions at their discrete positions but do not report the actual functions. However, many applications require the description of the functions, which must be retrieved from the gradients by an integration process. This study shows a spline model function-based integration technique that can construct original functions from irregularly measured gradient data over general shape domains with high accuracy and speed.</abstract><doi>10.1364/JOSAA.430638</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2021-08, Vol.38 (8), p.1187-1193
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_2579630920
source Optica Publishing Group Journals
title Antiderivative of gradient data by spline model integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiderivative%20of%20gradient%20data%20by%20spline%20model%20integration&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Badar,%20Irfan&rft.date=2021-08-01&rft.volume=38&rft.issue=8&rft.spage=1187&rft.epage=1193&rft.pages=1187-1193&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.430638&rft_dat=%3Cproquest_cross%3E2579630920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579630920&rft_id=info:pmid/&rfr_iscdi=true