Position observation-based calibration method for an LDV/SINS integrated navigation system

With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2021-09, Vol.60 (26), p.7869-7877
Hauptverfasser: Xiang, Zhiyi, Wang, Qi, Huang, Rong, Xi, Chongbin, Nie, Xiaoming, Zhou, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7877
container_issue 26
container_start_page 7869
container_title Applied optics (2004)
container_volume 60
creator Xiang, Zhiyi
Wang, Qi
Huang, Rong
Xi, Chongbin
Nie, Xiaoming
Zhou, Jian
description With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale factor error and misalignment angles between LDV and inertial measurement unit will affect the accuracy of navigation. Considering that not all global navigation satellite system (GNSS) receivers can directly provide velocity information and current mainstream calibration methods are sensitive to the measurement noise and outliers of velocity and position information, a robust calibration method aided by GNSS is proposed in this paper, which is based on position observation. Different from current popular calibration methods, the attitude information of the GNSS/SINS integrated navigation system obtained by an adaptive Kalman filter is used to construct the observation vector together with LDV velocity outputs and GNSS position outputs in this method. The LDV scale factor error and the misalignment angle are determined by the ratio of two observation vector modulus and the Davenport’s q-method method, respectively. The accuracy and robustness of the calibration method are verified by one vehicle test with normal GNSS signals and one vehicle test with GNSS signals with outliers. And the horizontal position error of dead reckoning of the calibrated LDV/SINS integrated system are less than 0.0314% and 0.1033% of the mileage, respectively.
doi_str_mv 10.1364/AO.430866
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579627074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2573513047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-524057e7eea297fd43483d76e0a44188a84225c0c9d3e4a35f6e4fd7e2f8261a3</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFKzVg_8g4EUPafd7N8dSP6FYoSriZdkmk7olydbdtNB_b2o8eZqX4WEYXoQuCR4RJvl4Mh9xhrWUR2hAiRApI1Ico0EXs5RQ_XGKzmJcY8wEz9QAfb746Frnm8QvI4SdPeR0aSMUSW4rtwy_m6SG9ssXSelDYptkdvs-Xjw9LxLXtLDqSKcbu3OrHsd9bKE-RyelrSJc_M0heru_e50-prP5w9N0MktzSnGbCsqxUKAALM1UWXDGNSuUBGw5J1pbzSkVOc6zggG3TJQSeFkooKWmklg2RNf93U3w31uIraldzKGqbAN-Gw0VKpNUYcU7evWPrv02NN13B8UEYZirTt30Kg8-xgCl2QRX27A3BJtDy2YyN33L7AcpaG5a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573513047</pqid></control><display><type>article</type><title>Position observation-based calibration method for an LDV/SINS integrated navigation system</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Xiang, Zhiyi ; Wang, Qi ; Huang, Rong ; Xi, Chongbin ; Nie, Xiaoming ; Zhou, Jian</creator><creatorcontrib>Xiang, Zhiyi ; Wang, Qi ; Huang, Rong ; Xi, Chongbin ; Nie, Xiaoming ; Zhou, Jian</creatorcontrib><description>With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale factor error and misalignment angles between LDV and inertial measurement unit will affect the accuracy of navigation. Considering that not all global navigation satellite system (GNSS) receivers can directly provide velocity information and current mainstream calibration methods are sensitive to the measurement noise and outliers of velocity and position information, a robust calibration method aided by GNSS is proposed in this paper, which is based on position observation. Different from current popular calibration methods, the attitude information of the GNSS/SINS integrated navigation system obtained by an adaptive Kalman filter is used to construct the observation vector together with LDV velocity outputs and GNSS position outputs in this method. The LDV scale factor error and the misalignment angle are determined by the ratio of two observation vector modulus and the Davenport’s q-method method, respectively. The accuracy and robustness of the calibration method are verified by one vehicle test with normal GNSS signals and one vehicle test with GNSS signals with outliers. And the horizontal position error of dead reckoning of the calibrated LDV/SINS integrated system are less than 0.0314% and 0.1033% of the mileage, respectively.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.430866</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Accuracy ; Calibration ; Dead reckoning ; Dynamic response ; Global navigation satellite system ; Horizontal orientation ; Inertial navigation ; Inertial platforms ; Kalman filters ; Laser doppler velocimeters ; Misalignment ; Navigation systems ; Noise measurement ; Noise sensitivity ; Odometers ; Outliers (statistics) ; Position errors ; Position measurement ; Strapdown inertial navigation ; Velocity ; Velocity measurement</subject><ispartof>Applied optics (2004), 2021-09, Vol.60 (26), p.7869-7877</ispartof><rights>Copyright Optical Society of America Sep 10, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-524057e7eea297fd43483d76e0a44188a84225c0c9d3e4a35f6e4fd7e2f8261a3</citedby><cites>FETCH-LOGICAL-c220t-524057e7eea297fd43483d76e0a44188a84225c0c9d3e4a35f6e4fd7e2f8261a3</cites><orcidid>0000-0002-4854-8441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiang, Zhiyi</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Xi, Chongbin</creatorcontrib><creatorcontrib>Nie, Xiaoming</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><title>Position observation-based calibration method for an LDV/SINS integrated navigation system</title><title>Applied optics (2004)</title><description>With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale factor error and misalignment angles between LDV and inertial measurement unit will affect the accuracy of navigation. Considering that not all global navigation satellite system (GNSS) receivers can directly provide velocity information and current mainstream calibration methods are sensitive to the measurement noise and outliers of velocity and position information, a robust calibration method aided by GNSS is proposed in this paper, which is based on position observation. Different from current popular calibration methods, the attitude information of the GNSS/SINS integrated navigation system obtained by an adaptive Kalman filter is used to construct the observation vector together with LDV velocity outputs and GNSS position outputs in this method. The LDV scale factor error and the misalignment angle are determined by the ratio of two observation vector modulus and the Davenport’s q-method method, respectively. The accuracy and robustness of the calibration method are verified by one vehicle test with normal GNSS signals and one vehicle test with GNSS signals with outliers. And the horizontal position error of dead reckoning of the calibrated LDV/SINS integrated system are less than 0.0314% and 0.1033% of the mileage, respectively.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Dead reckoning</subject><subject>Dynamic response</subject><subject>Global navigation satellite system</subject><subject>Horizontal orientation</subject><subject>Inertial navigation</subject><subject>Inertial platforms</subject><subject>Kalman filters</subject><subject>Laser doppler velocimeters</subject><subject>Misalignment</subject><subject>Navigation systems</subject><subject>Noise measurement</subject><subject>Noise sensitivity</subject><subject>Odometers</subject><subject>Outliers (statistics)</subject><subject>Position errors</subject><subject>Position measurement</subject><subject>Strapdown inertial navigation</subject><subject>Velocity</subject><subject>Velocity measurement</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFKzVg_8g4EUPafd7N8dSP6FYoSriZdkmk7olydbdtNB_b2o8eZqX4WEYXoQuCR4RJvl4Mh9xhrWUR2hAiRApI1Ico0EXs5RQ_XGKzmJcY8wEz9QAfb746Frnm8QvI4SdPeR0aSMUSW4rtwy_m6SG9ssXSelDYptkdvs-Xjw9LxLXtLDqSKcbu3OrHsd9bKE-RyelrSJc_M0heru_e50-prP5w9N0MktzSnGbCsqxUKAALM1UWXDGNSuUBGw5J1pbzSkVOc6zggG3TJQSeFkooKWmklg2RNf93U3w31uIraldzKGqbAN-Gw0VKpNUYcU7evWPrv02NN13B8UEYZirTt30Kg8-xgCl2QRX27A3BJtDy2YyN33L7AcpaG5a</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Xiang, Zhiyi</creator><creator>Wang, Qi</creator><creator>Huang, Rong</creator><creator>Xi, Chongbin</creator><creator>Nie, Xiaoming</creator><creator>Zhou, Jian</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4854-8441</orcidid></search><sort><creationdate>20210910</creationdate><title>Position observation-based calibration method for an LDV/SINS integrated navigation system</title><author>Xiang, Zhiyi ; Wang, Qi ; Huang, Rong ; Xi, Chongbin ; Nie, Xiaoming ; Zhou, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-524057e7eea297fd43483d76e0a44188a84225c0c9d3e4a35f6e4fd7e2f8261a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Dead reckoning</topic><topic>Dynamic response</topic><topic>Global navigation satellite system</topic><topic>Horizontal orientation</topic><topic>Inertial navigation</topic><topic>Inertial platforms</topic><topic>Kalman filters</topic><topic>Laser doppler velocimeters</topic><topic>Misalignment</topic><topic>Navigation systems</topic><topic>Noise measurement</topic><topic>Noise sensitivity</topic><topic>Odometers</topic><topic>Outliers (statistics)</topic><topic>Position errors</topic><topic>Position measurement</topic><topic>Strapdown inertial navigation</topic><topic>Velocity</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Zhiyi</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Xi, Chongbin</creatorcontrib><creatorcontrib>Nie, Xiaoming</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Zhiyi</au><au>Wang, Qi</au><au>Huang, Rong</au><au>Xi, Chongbin</au><au>Nie, Xiaoming</au><au>Zhou, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Position observation-based calibration method for an LDV/SINS integrated navigation system</atitle><jtitle>Applied optics (2004)</jtitle><date>2021-09-10</date><risdate>2021</risdate><volume>60</volume><issue>26</issue><spage>7869</spage><epage>7877</epage><pages>7869-7877</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale factor error and misalignment angles between LDV and inertial measurement unit will affect the accuracy of navigation. Considering that not all global navigation satellite system (GNSS) receivers can directly provide velocity information and current mainstream calibration methods are sensitive to the measurement noise and outliers of velocity and position information, a robust calibration method aided by GNSS is proposed in this paper, which is based on position observation. Different from current popular calibration methods, the attitude information of the GNSS/SINS integrated navigation system obtained by an adaptive Kalman filter is used to construct the observation vector together with LDV velocity outputs and GNSS position outputs in this method. The LDV scale factor error and the misalignment angle are determined by the ratio of two observation vector modulus and the Davenport’s q-method method, respectively. The accuracy and robustness of the calibration method are verified by one vehicle test with normal GNSS signals and one vehicle test with GNSS signals with outliers. And the horizontal position error of dead reckoning of the calibrated LDV/SINS integrated system are less than 0.0314% and 0.1033% of the mileage, respectively.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.430866</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4854-8441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2021-09, Vol.60 (26), p.7869-7877
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2579627074
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Accuracy
Calibration
Dead reckoning
Dynamic response
Global navigation satellite system
Horizontal orientation
Inertial navigation
Inertial platforms
Kalman filters
Laser doppler velocimeters
Misalignment
Navigation systems
Noise measurement
Noise sensitivity
Odometers
Outliers (statistics)
Position errors
Position measurement
Strapdown inertial navigation
Velocity
Velocity measurement
title Position observation-based calibration method for an LDV/SINS integrated navigation system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Position%20observation-based%20calibration%20method%20for%20an%20LDV/SINS%20integrated%20navigation%20system&rft.jtitle=Applied%20optics%20(2004)&rft.au=Xiang,%20Zhiyi&rft.date=2021-09-10&rft.volume=60&rft.issue=26&rft.spage=7869&rft.epage=7877&rft.pages=7869-7877&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.430866&rft_dat=%3Cproquest_cross%3E2573513047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573513047&rft_id=info:pmid/&rfr_iscdi=true