Position observation-based calibration method for an LDV/SINS integrated navigation system
With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale f...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2021-09, Vol.60 (26), p.7869-7877 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7877 |
---|---|
container_issue | 26 |
container_start_page | 7869 |
container_title | Applied optics (2004) |
container_volume | 60 |
creator | Xiang, Zhiyi Wang, Qi Huang, Rong Xi, Chongbin Nie, Xiaoming Zhou, Jian |
description | With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale factor error and misalignment angles between LDV and inertial measurement unit will affect the accuracy of navigation. Considering that not all global navigation satellite system (GNSS) receivers can directly provide velocity information and current mainstream calibration methods are sensitive to the measurement noise and outliers of velocity and position information, a robust calibration method aided by GNSS is proposed in this paper, which is based on position observation. Different from current popular calibration methods, the attitude information of the GNSS/SINS integrated navigation system obtained by an adaptive Kalman filter is used to construct the observation vector together with LDV velocity outputs and GNSS position outputs in this method. The LDV scale factor error and the misalignment angle are determined by the ratio of two observation vector modulus and the Davenport’s q-method method, respectively. The accuracy and robustness of the calibration method are verified by one vehicle test with normal GNSS signals and one vehicle test with GNSS signals with outliers. And the horizontal position error of dead reckoning of the calibrated LDV/SINS integrated system are less than 0.0314% and 0.1033% of the mileage, respectively. |
doi_str_mv | 10.1364/AO.430866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579627074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2573513047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-524057e7eea297fd43483d76e0a44188a84225c0c9d3e4a35f6e4fd7e2f8261a3</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFKzVg_8g4EUPafd7N8dSP6FYoSriZdkmk7olydbdtNB_b2o8eZqX4WEYXoQuCR4RJvl4Mh9xhrWUR2hAiRApI1Ico0EXs5RQ_XGKzmJcY8wEz9QAfb746Frnm8QvI4SdPeR0aSMUSW4rtwy_m6SG9ssXSelDYptkdvs-Xjw9LxLXtLDqSKcbu3OrHsd9bKE-RyelrSJc_M0heru_e50-prP5w9N0MktzSnGbCsqxUKAALM1UWXDGNSuUBGw5J1pbzSkVOc6zggG3TJQSeFkooKWmklg2RNf93U3w31uIraldzKGqbAN-Gw0VKpNUYcU7evWPrv02NN13B8UEYZirTt30Kg8-xgCl2QRX27A3BJtDy2YyN33L7AcpaG5a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573513047</pqid></control><display><type>article</type><title>Position observation-based calibration method for an LDV/SINS integrated navigation system</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Xiang, Zhiyi ; Wang, Qi ; Huang, Rong ; Xi, Chongbin ; Nie, Xiaoming ; Zhou, Jian</creator><creatorcontrib>Xiang, Zhiyi ; Wang, Qi ; Huang, Rong ; Xi, Chongbin ; Nie, Xiaoming ; Zhou, Jian</creatorcontrib><description>With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale factor error and misalignment angles between LDV and inertial measurement unit will affect the accuracy of navigation. Considering that not all global navigation satellite system (GNSS) receivers can directly provide velocity information and current mainstream calibration methods are sensitive to the measurement noise and outliers of velocity and position information, a robust calibration method aided by GNSS is proposed in this paper, which is based on position observation. Different from current popular calibration methods, the attitude information of the GNSS/SINS integrated navigation system obtained by an adaptive Kalman filter is used to construct the observation vector together with LDV velocity outputs and GNSS position outputs in this method. The LDV scale factor error and the misalignment angle are determined by the ratio of two observation vector modulus and the Davenport’s q-method method, respectively. The accuracy and robustness of the calibration method are verified by one vehicle test with normal GNSS signals and one vehicle test with GNSS signals with outliers. And the horizontal position error of dead reckoning of the calibrated LDV/SINS integrated system are less than 0.0314% and 0.1033% of the mileage, respectively.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.430866</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Accuracy ; Calibration ; Dead reckoning ; Dynamic response ; Global navigation satellite system ; Horizontal orientation ; Inertial navigation ; Inertial platforms ; Kalman filters ; Laser doppler velocimeters ; Misalignment ; Navigation systems ; Noise measurement ; Noise sensitivity ; Odometers ; Outliers (statistics) ; Position errors ; Position measurement ; Strapdown inertial navigation ; Velocity ; Velocity measurement</subject><ispartof>Applied optics (2004), 2021-09, Vol.60 (26), p.7869-7877</ispartof><rights>Copyright Optical Society of America Sep 10, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-524057e7eea297fd43483d76e0a44188a84225c0c9d3e4a35f6e4fd7e2f8261a3</citedby><cites>FETCH-LOGICAL-c220t-524057e7eea297fd43483d76e0a44188a84225c0c9d3e4a35f6e4fd7e2f8261a3</cites><orcidid>0000-0002-4854-8441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiang, Zhiyi</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Xi, Chongbin</creatorcontrib><creatorcontrib>Nie, Xiaoming</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><title>Position observation-based calibration method for an LDV/SINS integrated navigation system</title><title>Applied optics (2004)</title><description>With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale factor error and misalignment angles between LDV and inertial measurement unit will affect the accuracy of navigation. Considering that not all global navigation satellite system (GNSS) receivers can directly provide velocity information and current mainstream calibration methods are sensitive to the measurement noise and outliers of velocity and position information, a robust calibration method aided by GNSS is proposed in this paper, which is based on position observation. Different from current popular calibration methods, the attitude information of the GNSS/SINS integrated navigation system obtained by an adaptive Kalman filter is used to construct the observation vector together with LDV velocity outputs and GNSS position outputs in this method. The LDV scale factor error and the misalignment angle are determined by the ratio of two observation vector modulus and the Davenport’s q-method method, respectively. The accuracy and robustness of the calibration method are verified by one vehicle test with normal GNSS signals and one vehicle test with GNSS signals with outliers. And the horizontal position error of dead reckoning of the calibrated LDV/SINS integrated system are less than 0.0314% and 0.1033% of the mileage, respectively.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Dead reckoning</subject><subject>Dynamic response</subject><subject>Global navigation satellite system</subject><subject>Horizontal orientation</subject><subject>Inertial navigation</subject><subject>Inertial platforms</subject><subject>Kalman filters</subject><subject>Laser doppler velocimeters</subject><subject>Misalignment</subject><subject>Navigation systems</subject><subject>Noise measurement</subject><subject>Noise sensitivity</subject><subject>Odometers</subject><subject>Outliers (statistics)</subject><subject>Position errors</subject><subject>Position measurement</subject><subject>Strapdown inertial navigation</subject><subject>Velocity</subject><subject>Velocity measurement</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFKzVg_8g4EUPafd7N8dSP6FYoSriZdkmk7olydbdtNB_b2o8eZqX4WEYXoQuCR4RJvl4Mh9xhrWUR2hAiRApI1Ico0EXs5RQ_XGKzmJcY8wEz9QAfb746Frnm8QvI4SdPeR0aSMUSW4rtwy_m6SG9ssXSelDYptkdvs-Xjw9LxLXtLDqSKcbu3OrHsd9bKE-RyelrSJc_M0heru_e50-prP5w9N0MktzSnGbCsqxUKAALM1UWXDGNSuUBGw5J1pbzSkVOc6zggG3TJQSeFkooKWmklg2RNf93U3w31uIraldzKGqbAN-Gw0VKpNUYcU7evWPrv02NN13B8UEYZirTt30Kg8-xgCl2QRX27A3BJtDy2YyN33L7AcpaG5a</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Xiang, Zhiyi</creator><creator>Wang, Qi</creator><creator>Huang, Rong</creator><creator>Xi, Chongbin</creator><creator>Nie, Xiaoming</creator><creator>Zhou, Jian</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4854-8441</orcidid></search><sort><creationdate>20210910</creationdate><title>Position observation-based calibration method for an LDV/SINS integrated navigation system</title><author>Xiang, Zhiyi ; Wang, Qi ; Huang, Rong ; Xi, Chongbin ; Nie, Xiaoming ; Zhou, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-524057e7eea297fd43483d76e0a44188a84225c0c9d3e4a35f6e4fd7e2f8261a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Dead reckoning</topic><topic>Dynamic response</topic><topic>Global navigation satellite system</topic><topic>Horizontal orientation</topic><topic>Inertial navigation</topic><topic>Inertial platforms</topic><topic>Kalman filters</topic><topic>Laser doppler velocimeters</topic><topic>Misalignment</topic><topic>Navigation systems</topic><topic>Noise measurement</topic><topic>Noise sensitivity</topic><topic>Odometers</topic><topic>Outliers (statistics)</topic><topic>Position errors</topic><topic>Position measurement</topic><topic>Strapdown inertial navigation</topic><topic>Velocity</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Zhiyi</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Xi, Chongbin</creatorcontrib><creatorcontrib>Nie, Xiaoming</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Zhiyi</au><au>Wang, Qi</au><au>Huang, Rong</au><au>Xi, Chongbin</au><au>Nie, Xiaoming</au><au>Zhou, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Position observation-based calibration method for an LDV/SINS integrated navigation system</atitle><jtitle>Applied optics (2004)</jtitle><date>2021-09-10</date><risdate>2021</risdate><volume>60</volume><issue>26</issue><spage>7869</spage><epage>7877</epage><pages>7869-7877</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>With the advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDV) is expected to replace the odometer to be combined with a strapdown inertial navigation system (SINS) to form a higher precision integrated navigation system. However, LDV scale factor error and misalignment angles between LDV and inertial measurement unit will affect the accuracy of navigation. Considering that not all global navigation satellite system (GNSS) receivers can directly provide velocity information and current mainstream calibration methods are sensitive to the measurement noise and outliers of velocity and position information, a robust calibration method aided by GNSS is proposed in this paper, which is based on position observation. Different from current popular calibration methods, the attitude information of the GNSS/SINS integrated navigation system obtained by an adaptive Kalman filter is used to construct the observation vector together with LDV velocity outputs and GNSS position outputs in this method. The LDV scale factor error and the misalignment angle are determined by the ratio of two observation vector modulus and the Davenport’s q-method method, respectively. The accuracy and robustness of the calibration method are verified by one vehicle test with normal GNSS signals and one vehicle test with GNSS signals with outliers. And the horizontal position error of dead reckoning of the calibrated LDV/SINS integrated system are less than 0.0314% and 0.1033% of the mileage, respectively.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.430866</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4854-8441</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2021-09, Vol.60 (26), p.7869-7877 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2579627074 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Accuracy Calibration Dead reckoning Dynamic response Global navigation satellite system Horizontal orientation Inertial navigation Inertial platforms Kalman filters Laser doppler velocimeters Misalignment Navigation systems Noise measurement Noise sensitivity Odometers Outliers (statistics) Position errors Position measurement Strapdown inertial navigation Velocity Velocity measurement |
title | Position observation-based calibration method for an LDV/SINS integrated navigation system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Position%20observation-based%20calibration%20method%20for%20an%20LDV/SINS%20integrated%20navigation%20system&rft.jtitle=Applied%20optics%20(2004)&rft.au=Xiang,%20Zhiyi&rft.date=2021-09-10&rft.volume=60&rft.issue=26&rft.spage=7869&rft.epage=7877&rft.pages=7869-7877&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.430866&rft_dat=%3Cproquest_cross%3E2573513047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573513047&rft_id=info:pmid/&rfr_iscdi=true |