Binding Sites and the Mechanism of Action of Propofol and a Photoreactive Analogue in Prokaryotic Voltage-Gated Sodium Channels

Propofol, one of the most commonly used intravenous general anesthetics, modulates neuronal function by interacting with ion channels. The mechanisms that link propofol binding to the modulation of distinct ion channel states, however, are not understood. To tackle this problem, we investigated the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical neuroscience 2021-10, Vol.12 (20), p.3898-3914
Hauptverfasser: Yang, Elaine, Bu, Weiming, Suma, Antonio, Carnevale, Vincenzo, Grasty, Kimberly C, Loll, Patrick J, Woll, Kellie, Bhanu, Natarajan, Garcia, Benjamin A, Eckenhoff, Roderic G, Covarrubias, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3914
container_issue 20
container_start_page 3898
container_title ACS chemical neuroscience
container_volume 12
creator Yang, Elaine
Bu, Weiming
Suma, Antonio
Carnevale, Vincenzo
Grasty, Kimberly C
Loll, Patrick J
Woll, Kellie
Bhanu, Natarajan
Garcia, Benjamin A
Eckenhoff, Roderic G
Covarrubias, Manuel
description Propofol, one of the most commonly used intravenous general anesthetics, modulates neuronal function by interacting with ion channels. The mechanisms that link propofol binding to the modulation of distinct ion channel states, however, are not understood. To tackle this problem, we investigated the prokaryotic ancestors of eukaryotic voltage-gated Na+ channels (Navs) using unbiased photoaffinity labeling (PAL) with a diazirine derivative of propofol (AziPm), electrophysiological methods, and mutagenesis. AziPm inhibits Nav function in a manner that is indistinguishable from that of the parent compound by promoting activation-coupled inactivation. In several replicates (8/9) involving NaChBac and NavMs, we found adducts at residues located at the C-terminal end of the S4 voltage sensor, the S4-S5 linker, and the N-terminal end of the S5 segment. However, the non-inactivating mutant NaChBac-T220A yielded adducts that were different from those found in the wild-type counterpart, which suggested state-dependent changes at the binding site. Then, using molecular dynamics simulations to further elucidate the structural basis of Nav modulation by propofol, we show that the S4 voltage sensors and the S4-S5 linkers shape two distinct propofol binding sites in a conformation-dependent manner. Supporting the PAL and MD simulation results, we also found that Ala mutations of a subset of adducted residues have distinct effects on gating modulation of NaChBac and NavMs by propofol. The results of this study provide direct insights into the structural basis of the mechanism through which propofol binding promotes activation-coupled inactivation to inhibit Nav channel function.
doi_str_mv 10.1021/acschemneuro.1c00495
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579381011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579381011</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-446858b57127e962dc6cec008ecf4a114983b2bc4336852fc485c2e04262ed633</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0E4v0HCHnJJuBXEmdZKihIIJB4bCPXmbSGxC62g8SKX8elBbFi5ZF87h3NQeiIklNKGD1TOug59BYG706pJkRU-QbapZWQWUkrvvln3kF7IbwQUlREFttoh4uClILJXfR5bmxj7Aw_mAgBK9vgOAd8C3qurAk9di0e6WicXU733i1c67pvTuH7uYvOg0r_74BHVnVuNgA2dgm-Kv_hotH42XVRzSCbqAgNfnCNGXo8TvUWunCAtlrVBThcv_vo6fLicXyV3dxNrsejm0xxIWMmRCFzOc1LykqoCtboQkO6WYJuhaJUVJJP2VQLzhPIWi1krhkQwQoGTcH5PjpZ9S68exsgxLo3QUPXKQtuCDXLy4pLSihNqFih2rsQPLT1wps-XVNTUi_V13_V12v1KXa83jBMe2h-Qz-uE0BWQIrXL27wyVf4v_MLSgWURA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579381011</pqid></control><display><type>article</type><title>Binding Sites and the Mechanism of Action of Propofol and a Photoreactive Analogue in Prokaryotic Voltage-Gated Sodium Channels</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yang, Elaine ; Bu, Weiming ; Suma, Antonio ; Carnevale, Vincenzo ; Grasty, Kimberly C ; Loll, Patrick J ; Woll, Kellie ; Bhanu, Natarajan ; Garcia, Benjamin A ; Eckenhoff, Roderic G ; Covarrubias, Manuel</creator><creatorcontrib>Yang, Elaine ; Bu, Weiming ; Suma, Antonio ; Carnevale, Vincenzo ; Grasty, Kimberly C ; Loll, Patrick J ; Woll, Kellie ; Bhanu, Natarajan ; Garcia, Benjamin A ; Eckenhoff, Roderic G ; Covarrubias, Manuel</creatorcontrib><description>Propofol, one of the most commonly used intravenous general anesthetics, modulates neuronal function by interacting with ion channels. The mechanisms that link propofol binding to the modulation of distinct ion channel states, however, are not understood. To tackle this problem, we investigated the prokaryotic ancestors of eukaryotic voltage-gated Na+ channels (Navs) using unbiased photoaffinity labeling (PAL) with a diazirine derivative of propofol (AziPm), electrophysiological methods, and mutagenesis. AziPm inhibits Nav function in a manner that is indistinguishable from that of the parent compound by promoting activation-coupled inactivation. In several replicates (8/9) involving NaChBac and NavMs, we found adducts at residues located at the C-terminal end of the S4 voltage sensor, the S4-S5 linker, and the N-terminal end of the S5 segment. However, the non-inactivating mutant NaChBac-T220A yielded adducts that were different from those found in the wild-type counterpart, which suggested state-dependent changes at the binding site. Then, using molecular dynamics simulations to further elucidate the structural basis of Nav modulation by propofol, we show that the S4 voltage sensors and the S4-S5 linkers shape two distinct propofol binding sites in a conformation-dependent manner. Supporting the PAL and MD simulation results, we also found that Ala mutations of a subset of adducted residues have distinct effects on gating modulation of NaChBac and NavMs by propofol. The results of this study provide direct insights into the structural basis of the mechanism through which propofol binding promotes activation-coupled inactivation to inhibit Nav channel function.</description><identifier>ISSN: 1948-7193</identifier><identifier>EISSN: 1948-7193</identifier><identifier>DOI: 10.1021/acschemneuro.1c00495</identifier><identifier>PMID: 34607428</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anesthetics, General ; Binding Sites ; Ion Channels ; Propofol - pharmacology ; Voltage-Gated Sodium Channels - metabolism</subject><ispartof>ACS chemical neuroscience, 2021-10, Vol.12 (20), p.3898-3914</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-446858b57127e962dc6cec008ecf4a114983b2bc4336852fc485c2e04262ed633</citedby><cites>FETCH-LOGICAL-a348t-446858b57127e962dc6cec008ecf4a114983b2bc4336852fc485c2e04262ed633</cites><orcidid>0000-0002-1918-8280 ; 0000-0002-0881-4143 ; 0000-0002-5049-9255 ; 0000-0002-2306-1207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschemneuro.1c00495$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschemneuro.1c00495$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34607428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Elaine</creatorcontrib><creatorcontrib>Bu, Weiming</creatorcontrib><creatorcontrib>Suma, Antonio</creatorcontrib><creatorcontrib>Carnevale, Vincenzo</creatorcontrib><creatorcontrib>Grasty, Kimberly C</creatorcontrib><creatorcontrib>Loll, Patrick J</creatorcontrib><creatorcontrib>Woll, Kellie</creatorcontrib><creatorcontrib>Bhanu, Natarajan</creatorcontrib><creatorcontrib>Garcia, Benjamin A</creatorcontrib><creatorcontrib>Eckenhoff, Roderic G</creatorcontrib><creatorcontrib>Covarrubias, Manuel</creatorcontrib><title>Binding Sites and the Mechanism of Action of Propofol and a Photoreactive Analogue in Prokaryotic Voltage-Gated Sodium Channels</title><title>ACS chemical neuroscience</title><addtitle>ACS Chem. Neurosci</addtitle><description>Propofol, one of the most commonly used intravenous general anesthetics, modulates neuronal function by interacting with ion channels. The mechanisms that link propofol binding to the modulation of distinct ion channel states, however, are not understood. To tackle this problem, we investigated the prokaryotic ancestors of eukaryotic voltage-gated Na+ channels (Navs) using unbiased photoaffinity labeling (PAL) with a diazirine derivative of propofol (AziPm), electrophysiological methods, and mutagenesis. AziPm inhibits Nav function in a manner that is indistinguishable from that of the parent compound by promoting activation-coupled inactivation. In several replicates (8/9) involving NaChBac and NavMs, we found adducts at residues located at the C-terminal end of the S4 voltage sensor, the S4-S5 linker, and the N-terminal end of the S5 segment. However, the non-inactivating mutant NaChBac-T220A yielded adducts that were different from those found in the wild-type counterpart, which suggested state-dependent changes at the binding site. Then, using molecular dynamics simulations to further elucidate the structural basis of Nav modulation by propofol, we show that the S4 voltage sensors and the S4-S5 linkers shape two distinct propofol binding sites in a conformation-dependent manner. Supporting the PAL and MD simulation results, we also found that Ala mutations of a subset of adducted residues have distinct effects on gating modulation of NaChBac and NavMs by propofol. The results of this study provide direct insights into the structural basis of the mechanism through which propofol binding promotes activation-coupled inactivation to inhibit Nav channel function.</description><subject>Anesthetics, General</subject><subject>Binding Sites</subject><subject>Ion Channels</subject><subject>Propofol - pharmacology</subject><subject>Voltage-Gated Sodium Channels - metabolism</subject><issn>1948-7193</issn><issn>1948-7193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0E4v0HCHnJJuBXEmdZKihIIJB4bCPXmbSGxC62g8SKX8elBbFi5ZF87h3NQeiIklNKGD1TOug59BYG706pJkRU-QbapZWQWUkrvvln3kF7IbwQUlREFttoh4uClILJXfR5bmxj7Aw_mAgBK9vgOAd8C3qurAk9di0e6WicXU733i1c67pvTuH7uYvOg0r_74BHVnVuNgA2dgm-Kv_hotH42XVRzSCbqAgNfnCNGXo8TvUWunCAtlrVBThcv_vo6fLicXyV3dxNrsejm0xxIWMmRCFzOc1LykqoCtboQkO6WYJuhaJUVJJP2VQLzhPIWi1krhkQwQoGTcH5PjpZ9S68exsgxLo3QUPXKQtuCDXLy4pLSihNqFih2rsQPLT1wps-XVNTUi_V13_V12v1KXa83jBMe2h-Qz-uE0BWQIrXL27wyVf4v_MLSgWURA</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Yang, Elaine</creator><creator>Bu, Weiming</creator><creator>Suma, Antonio</creator><creator>Carnevale, Vincenzo</creator><creator>Grasty, Kimberly C</creator><creator>Loll, Patrick J</creator><creator>Woll, Kellie</creator><creator>Bhanu, Natarajan</creator><creator>Garcia, Benjamin A</creator><creator>Eckenhoff, Roderic G</creator><creator>Covarrubias, Manuel</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1918-8280</orcidid><orcidid>https://orcid.org/0000-0002-0881-4143</orcidid><orcidid>https://orcid.org/0000-0002-5049-9255</orcidid><orcidid>https://orcid.org/0000-0002-2306-1207</orcidid></search><sort><creationdate>20211020</creationdate><title>Binding Sites and the Mechanism of Action of Propofol and a Photoreactive Analogue in Prokaryotic Voltage-Gated Sodium Channels</title><author>Yang, Elaine ; Bu, Weiming ; Suma, Antonio ; Carnevale, Vincenzo ; Grasty, Kimberly C ; Loll, Patrick J ; Woll, Kellie ; Bhanu, Natarajan ; Garcia, Benjamin A ; Eckenhoff, Roderic G ; Covarrubias, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-446858b57127e962dc6cec008ecf4a114983b2bc4336852fc485c2e04262ed633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anesthetics, General</topic><topic>Binding Sites</topic><topic>Ion Channels</topic><topic>Propofol - pharmacology</topic><topic>Voltage-Gated Sodium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Elaine</creatorcontrib><creatorcontrib>Bu, Weiming</creatorcontrib><creatorcontrib>Suma, Antonio</creatorcontrib><creatorcontrib>Carnevale, Vincenzo</creatorcontrib><creatorcontrib>Grasty, Kimberly C</creatorcontrib><creatorcontrib>Loll, Patrick J</creatorcontrib><creatorcontrib>Woll, Kellie</creatorcontrib><creatorcontrib>Bhanu, Natarajan</creatorcontrib><creatorcontrib>Garcia, Benjamin A</creatorcontrib><creatorcontrib>Eckenhoff, Roderic G</creatorcontrib><creatorcontrib>Covarrubias, Manuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS chemical neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Elaine</au><au>Bu, Weiming</au><au>Suma, Antonio</au><au>Carnevale, Vincenzo</au><au>Grasty, Kimberly C</au><au>Loll, Patrick J</au><au>Woll, Kellie</au><au>Bhanu, Natarajan</au><au>Garcia, Benjamin A</au><au>Eckenhoff, Roderic G</au><au>Covarrubias, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding Sites and the Mechanism of Action of Propofol and a Photoreactive Analogue in Prokaryotic Voltage-Gated Sodium Channels</atitle><jtitle>ACS chemical neuroscience</jtitle><addtitle>ACS Chem. Neurosci</addtitle><date>2021-10-20</date><risdate>2021</risdate><volume>12</volume><issue>20</issue><spage>3898</spage><epage>3914</epage><pages>3898-3914</pages><issn>1948-7193</issn><eissn>1948-7193</eissn><abstract>Propofol, one of the most commonly used intravenous general anesthetics, modulates neuronal function by interacting with ion channels. The mechanisms that link propofol binding to the modulation of distinct ion channel states, however, are not understood. To tackle this problem, we investigated the prokaryotic ancestors of eukaryotic voltage-gated Na+ channels (Navs) using unbiased photoaffinity labeling (PAL) with a diazirine derivative of propofol (AziPm), electrophysiological methods, and mutagenesis. AziPm inhibits Nav function in a manner that is indistinguishable from that of the parent compound by promoting activation-coupled inactivation. In several replicates (8/9) involving NaChBac and NavMs, we found adducts at residues located at the C-terminal end of the S4 voltage sensor, the S4-S5 linker, and the N-terminal end of the S5 segment. However, the non-inactivating mutant NaChBac-T220A yielded adducts that were different from those found in the wild-type counterpart, which suggested state-dependent changes at the binding site. Then, using molecular dynamics simulations to further elucidate the structural basis of Nav modulation by propofol, we show that the S4 voltage sensors and the S4-S5 linkers shape two distinct propofol binding sites in a conformation-dependent manner. Supporting the PAL and MD simulation results, we also found that Ala mutations of a subset of adducted residues have distinct effects on gating modulation of NaChBac and NavMs by propofol. The results of this study provide direct insights into the structural basis of the mechanism through which propofol binding promotes activation-coupled inactivation to inhibit Nav channel function.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34607428</pmid><doi>10.1021/acschemneuro.1c00495</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1918-8280</orcidid><orcidid>https://orcid.org/0000-0002-0881-4143</orcidid><orcidid>https://orcid.org/0000-0002-5049-9255</orcidid><orcidid>https://orcid.org/0000-0002-2306-1207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7193
ispartof ACS chemical neuroscience, 2021-10, Vol.12 (20), p.3898-3914
issn 1948-7193
1948-7193
language eng
recordid cdi_proquest_miscellaneous_2579381011
source MEDLINE; American Chemical Society Journals
subjects Anesthetics, General
Binding Sites
Ion Channels
Propofol - pharmacology
Voltage-Gated Sodium Channels - metabolism
title Binding Sites and the Mechanism of Action of Propofol and a Photoreactive Analogue in Prokaryotic Voltage-Gated Sodium Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20Sites%20and%20the%20Mechanism%20of%20Action%20of%20Propofol%20and%20a%20Photoreactive%20Analogue%20in%20Prokaryotic%20Voltage-Gated%20Sodium%20Channels&rft.jtitle=ACS%20chemical%20neuroscience&rft.au=Yang,%20Elaine&rft.date=2021-10-20&rft.volume=12&rft.issue=20&rft.spage=3898&rft.epage=3914&rft.pages=3898-3914&rft.issn=1948-7193&rft.eissn=1948-7193&rft_id=info:doi/10.1021/acschemneuro.1c00495&rft_dat=%3Cproquest_cross%3E2579381011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579381011&rft_id=info:pmid/34607428&rfr_iscdi=true