The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice

•Axonal bifurcations are time and spatially regulated in typical callosal development.•Mice with spontaneous corpus callosum dysgenesis display high rates of axonal bifurcations in frontal medial cortex.•Axonal bifurcations are time dysregulated during the development of corpus callosum dysgenesis....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2021-11, Vol.477, p.14-24
Hauptverfasser: Rayêe, Danielle, Iack, Pamela Meneses, Christoff, Raissa R., Lourenço, Michele R., Bonifácio, Christiane, Boltz, Jürgen, Lent, Roberto, Garcez, Patricia P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue
container_start_page 14
container_title Neuroscience
container_volume 477
creator Rayêe, Danielle
Iack, Pamela Meneses
Christoff, Raissa R.
Lourenço, Michele R.
Bonifácio, Christiane
Boltz, Jürgen
Lent, Roberto
Garcez, Patricia P.
description •Axonal bifurcations are time and spatially regulated in typical callosal development.•Mice with spontaneous corpus callosum dysgenesis display high rates of axonal bifurcations in frontal medial cortex.•Axonal bifurcations are time dysregulated during the development of corpus callosum dysgenesis. The corpus callosum (CC) is a major interhemispheric commissure of placental mammals. Early steps of CC formation rely on guidance strategies, such as axonal branching and collateralization. Here we analyze the time-course dynamics of axonal bifurcation during typical cortical development or in a CC dysgenesis mouse model. We use Swiss mice as a typical CC mouse model and find that axonal bifurcation rates rise in the cerebral cortex from embryonic day (E)17 and are reduced by postnatal day (P)9. Since callosal neurons populate deep and superficial cortical layers, we compare the axon bifurcation ratio between those neurons by electroporating ex vivo brains at E13 and E15, using eGFP reporter to label the newborn neurons on organotypic slices. Our results suggest that deep layer neurons bifurcate 32% more than superficial ones. To investigate axonal bifurcation in CC dysgenesis, we use BALB/c mice as a spontaneous CC dysgenesis model. BALB/c mice present a typical layer distribution of SATB2 callosal cells, despite the occurrence of callosal anomalies. However, using anterograde DiI tracing, we find that BALB/c mice display increased rates of axonal bifurcations during early and late cortical development in the medial frontal cortex. Midline guidepost cells adjacent to the medial frontal cortex are significant reduced in the CC dysgenesis mouse model. Altogether these data suggest that callosal collateral axonal exuberance is maintained in the absence of midline guidepost signaling and might facilitate aberrant connections in the CC dysgenesis mouse model.
doi_str_mv 10.1016/j.neuroscience.2021.09.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579086161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452221004875</els_id><sourcerecordid>2579086161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-f989c42ccb5026cbafba9caae2d8e721521fe31669109c81a06a9e40eac655413</originalsourceid><addsrcrecordid>eNqNkMFO4zAQhq0Vq6XL7iugiNNeEsZO4sbcui0LSKy4lLPlTCbCVRIXO0Ht2-OqZbVHfPGM9f0z8sfYFYeMA5fXm2ygybuAlgakTIDgGagMBHxhM17N83ReFsUZm0EOMi1KIc7Z9xA2EE9Z5N_YeV5I4CDzGTPrF0pW-8H0FkPi2mSxc0Py27aTRzPaWK_ojTq37WkYEzskY-SX5Kn2pkuWzo-0O8TW-63F-GKGJlnEonMhdn8t0g_2tTVdoJ-n-4I9_7ldL-_Tx6e7h-XiMcW8gjFtVaWwEIh1CUJibdraKDSGRFPRXPBS8JZyLqXioLDiBqRRVAAZlGVZ8PyC_TrO3Xr3OlEYdW8DUteZgdwUtCjnCirJ5QG9OaIYLQZPrd562xu_1xz0QbHe6P8V64NiDUpHxTF8edoz1T01_6IfTiOwOgIUf_tmyevTmMZ6wlE3zn5mzztyUpQk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579086161</pqid></control><display><type>article</type><title>The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rayêe, Danielle ; Iack, Pamela Meneses ; Christoff, Raissa R. ; Lourenço, Michele R. ; Bonifácio, Christiane ; Boltz, Jürgen ; Lent, Roberto ; Garcez, Patricia P.</creator><creatorcontrib>Rayêe, Danielle ; Iack, Pamela Meneses ; Christoff, Raissa R. ; Lourenço, Michele R. ; Bonifácio, Christiane ; Boltz, Jürgen ; Lent, Roberto ; Garcez, Patricia P.</creatorcontrib><description>•Axonal bifurcations are time and spatially regulated in typical callosal development.•Mice with spontaneous corpus callosum dysgenesis display high rates of axonal bifurcations in frontal medial cortex.•Axonal bifurcations are time dysregulated during the development of corpus callosum dysgenesis. The corpus callosum (CC) is a major interhemispheric commissure of placental mammals. Early steps of CC formation rely on guidance strategies, such as axonal branching and collateralization. Here we analyze the time-course dynamics of axonal bifurcation during typical cortical development or in a CC dysgenesis mouse model. We use Swiss mice as a typical CC mouse model and find that axonal bifurcation rates rise in the cerebral cortex from embryonic day (E)17 and are reduced by postnatal day (P)9. Since callosal neurons populate deep and superficial cortical layers, we compare the axon bifurcation ratio between those neurons by electroporating ex vivo brains at E13 and E15, using eGFP reporter to label the newborn neurons on organotypic slices. Our results suggest that deep layer neurons bifurcate 32% more than superficial ones. To investigate axonal bifurcation in CC dysgenesis, we use BALB/c mice as a spontaneous CC dysgenesis model. BALB/c mice present a typical layer distribution of SATB2 callosal cells, despite the occurrence of callosal anomalies. However, using anterograde DiI tracing, we find that BALB/c mice display increased rates of axonal bifurcations during early and late cortical development in the medial frontal cortex. Midline guidepost cells adjacent to the medial frontal cortex are significant reduced in the CC dysgenesis mouse model. Altogether these data suggest that callosal collateral axonal exuberance is maintained in the absence of midline guidepost signaling and might facilitate aberrant connections in the CC dysgenesis mouse model.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2021.09.020</identifier><identifier>PMID: 34601063</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Animals ; axonal guidance ; Axons ; Cerebral Cortex ; Corpus Callosum ; corpus callosum dysgenesis ; Female ; Mice ; Mice, Inbred BALB C ; Placenta ; plasticity ; Pregnancy</subject><ispartof>Neuroscience, 2021-11, Vol.477, p.14-24</ispartof><rights>2021 IBRO</rights><rights>Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-f989c42ccb5026cbafba9caae2d8e721521fe31669109c81a06a9e40eac655413</citedby><cites>FETCH-LOGICAL-c380t-f989c42ccb5026cbafba9caae2d8e721521fe31669109c81a06a9e40eac655413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuroscience.2021.09.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34601063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rayêe, Danielle</creatorcontrib><creatorcontrib>Iack, Pamela Meneses</creatorcontrib><creatorcontrib>Christoff, Raissa R.</creatorcontrib><creatorcontrib>Lourenço, Michele R.</creatorcontrib><creatorcontrib>Bonifácio, Christiane</creatorcontrib><creatorcontrib>Boltz, Jürgen</creatorcontrib><creatorcontrib>Lent, Roberto</creatorcontrib><creatorcontrib>Garcez, Patricia P.</creatorcontrib><title>The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>•Axonal bifurcations are time and spatially regulated in typical callosal development.•Mice with spontaneous corpus callosum dysgenesis display high rates of axonal bifurcations in frontal medial cortex.•Axonal bifurcations are time dysregulated during the development of corpus callosum dysgenesis. The corpus callosum (CC) is a major interhemispheric commissure of placental mammals. Early steps of CC formation rely on guidance strategies, such as axonal branching and collateralization. Here we analyze the time-course dynamics of axonal bifurcation during typical cortical development or in a CC dysgenesis mouse model. We use Swiss mice as a typical CC mouse model and find that axonal bifurcation rates rise in the cerebral cortex from embryonic day (E)17 and are reduced by postnatal day (P)9. Since callosal neurons populate deep and superficial cortical layers, we compare the axon bifurcation ratio between those neurons by electroporating ex vivo brains at E13 and E15, using eGFP reporter to label the newborn neurons on organotypic slices. Our results suggest that deep layer neurons bifurcate 32% more than superficial ones. To investigate axonal bifurcation in CC dysgenesis, we use BALB/c mice as a spontaneous CC dysgenesis model. BALB/c mice present a typical layer distribution of SATB2 callosal cells, despite the occurrence of callosal anomalies. However, using anterograde DiI tracing, we find that BALB/c mice display increased rates of axonal bifurcations during early and late cortical development in the medial frontal cortex. Midline guidepost cells adjacent to the medial frontal cortex are significant reduced in the CC dysgenesis mouse model. Altogether these data suggest that callosal collateral axonal exuberance is maintained in the absence of midline guidepost signaling and might facilitate aberrant connections in the CC dysgenesis mouse model.</description><subject>Animals</subject><subject>axonal guidance</subject><subject>Axons</subject><subject>Cerebral Cortex</subject><subject>Corpus Callosum</subject><subject>corpus callosum dysgenesis</subject><subject>Female</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Placenta</subject><subject>plasticity</subject><subject>Pregnancy</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMFO4zAQhq0Vq6XL7iugiNNeEsZO4sbcui0LSKy4lLPlTCbCVRIXO0Ht2-OqZbVHfPGM9f0z8sfYFYeMA5fXm2ygybuAlgakTIDgGagMBHxhM17N83ReFsUZm0EOMi1KIc7Z9xA2EE9Z5N_YeV5I4CDzGTPrF0pW-8H0FkPi2mSxc0Py27aTRzPaWK_ojTq37WkYEzskY-SX5Kn2pkuWzo-0O8TW-63F-GKGJlnEonMhdn8t0g_2tTVdoJ-n-4I9_7ldL-_Tx6e7h-XiMcW8gjFtVaWwEIh1CUJibdraKDSGRFPRXPBS8JZyLqXioLDiBqRRVAAZlGVZ8PyC_TrO3Xr3OlEYdW8DUteZgdwUtCjnCirJ5QG9OaIYLQZPrd562xu_1xz0QbHe6P8V64NiDUpHxTF8edoz1T01_6IfTiOwOgIUf_tmyevTmMZ6wlE3zn5mzztyUpQk</recordid><startdate>20211121</startdate><enddate>20211121</enddate><creator>Rayêe, Danielle</creator><creator>Iack, Pamela Meneses</creator><creator>Christoff, Raissa R.</creator><creator>Lourenço, Michele R.</creator><creator>Bonifácio, Christiane</creator><creator>Boltz, Jürgen</creator><creator>Lent, Roberto</creator><creator>Garcez, Patricia P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20211121</creationdate><title>The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice</title><author>Rayêe, Danielle ; Iack, Pamela Meneses ; Christoff, Raissa R. ; Lourenço, Michele R. ; Bonifácio, Christiane ; Boltz, Jürgen ; Lent, Roberto ; Garcez, Patricia P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-f989c42ccb5026cbafba9caae2d8e721521fe31669109c81a06a9e40eac655413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>axonal guidance</topic><topic>Axons</topic><topic>Cerebral Cortex</topic><topic>Corpus Callosum</topic><topic>corpus callosum dysgenesis</topic><topic>Female</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Placenta</topic><topic>plasticity</topic><topic>Pregnancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rayêe, Danielle</creatorcontrib><creatorcontrib>Iack, Pamela Meneses</creatorcontrib><creatorcontrib>Christoff, Raissa R.</creatorcontrib><creatorcontrib>Lourenço, Michele R.</creatorcontrib><creatorcontrib>Bonifácio, Christiane</creatorcontrib><creatorcontrib>Boltz, Jürgen</creatorcontrib><creatorcontrib>Lent, Roberto</creatorcontrib><creatorcontrib>Garcez, Patricia P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rayêe, Danielle</au><au>Iack, Pamela Meneses</au><au>Christoff, Raissa R.</au><au>Lourenço, Michele R.</au><au>Bonifácio, Christiane</au><au>Boltz, Jürgen</au><au>Lent, Roberto</au><au>Garcez, Patricia P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2021-11-21</date><risdate>2021</risdate><volume>477</volume><spage>14</spage><epage>24</epage><pages>14-24</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><abstract>•Axonal bifurcations are time and spatially regulated in typical callosal development.•Mice with spontaneous corpus callosum dysgenesis display high rates of axonal bifurcations in frontal medial cortex.•Axonal bifurcations are time dysregulated during the development of corpus callosum dysgenesis. The corpus callosum (CC) is a major interhemispheric commissure of placental mammals. Early steps of CC formation rely on guidance strategies, such as axonal branching and collateralization. Here we analyze the time-course dynamics of axonal bifurcation during typical cortical development or in a CC dysgenesis mouse model. We use Swiss mice as a typical CC mouse model and find that axonal bifurcation rates rise in the cerebral cortex from embryonic day (E)17 and are reduced by postnatal day (P)9. Since callosal neurons populate deep and superficial cortical layers, we compare the axon bifurcation ratio between those neurons by electroporating ex vivo brains at E13 and E15, using eGFP reporter to label the newborn neurons on organotypic slices. Our results suggest that deep layer neurons bifurcate 32% more than superficial ones. To investigate axonal bifurcation in CC dysgenesis, we use BALB/c mice as a spontaneous CC dysgenesis model. BALB/c mice present a typical layer distribution of SATB2 callosal cells, despite the occurrence of callosal anomalies. However, using anterograde DiI tracing, we find that BALB/c mice display increased rates of axonal bifurcations during early and late cortical development in the medial frontal cortex. Midline guidepost cells adjacent to the medial frontal cortex are significant reduced in the CC dysgenesis mouse model. Altogether these data suggest that callosal collateral axonal exuberance is maintained in the absence of midline guidepost signaling and might facilitate aberrant connections in the CC dysgenesis mouse model.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34601063</pmid><doi>10.1016/j.neuroscience.2021.09.020</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 2021-11, Vol.477, p.14-24
issn 0306-4522
1873-7544
language eng
recordid cdi_proquest_miscellaneous_2579086161
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
axonal guidance
Axons
Cerebral Cortex
Corpus Callosum
corpus callosum dysgenesis
Female
Mice
Mice, Inbred BALB C
Placenta
plasticity
Pregnancy
title The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dynamics%20of%20Axon%20Bifurcation%20Development%20in%20the%20Cerebral%20Cortex%20of%20Typical%20and%20Acallosal%20Mice&rft.jtitle=Neuroscience&rft.au=Ray%C3%AAe,%20Danielle&rft.date=2021-11-21&rft.volume=477&rft.spage=14&rft.epage=24&rft.pages=14-24&rft.issn=0306-4522&rft.eissn=1873-7544&rft_id=info:doi/10.1016/j.neuroscience.2021.09.020&rft_dat=%3Cproquest_cross%3E2579086161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579086161&rft_id=info:pmid/34601063&rft_els_id=S0306452221004875&rfr_iscdi=true