Diagnosis of Gulf War Illness Using Laser-Induced Spectra Acquired from Blood Samples

Gulf War illness (GWI) is a chronic illness with no known validated biomarkers that affects the lives of hundreds of thousands of people. As a result, there is an urgent need for the development of an untargeted and unbiased method to distinguish GWI patients from non-GWI patients. We report on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied spectroscopy 2022-08, Vol.76 (8), p.887-893
Hauptverfasser: Gaudiuso, Rosalba, Chen, Sirui, Kokkotou, Efi, Conboy, Lisa, Jacobson, Eric, Hanlon, Eugene B., Melikechi, Noureddine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 893
container_issue 8
container_start_page 887
container_title Applied spectroscopy
container_volume 76
creator Gaudiuso, Rosalba
Chen, Sirui
Kokkotou, Efi
Conboy, Lisa
Jacobson, Eric
Hanlon, Eugene B.
Melikechi, Noureddine
description Gulf War illness (GWI) is a chronic illness with no known validated biomarkers that affects the lives of hundreds of thousands of people. As a result, there is an urgent need for the development of an untargeted and unbiased method to distinguish GWI patients from non-GWI patients. We report on the application of laser-induced breakdown spectroscopy (LIBS) to distinguish blood plasma samples from a group of subjects with GWI and from subjects with chronic low back pain as controls. We initially obtained LIBS data from blood plasma samples of four GWI patients and four non-GWI patients. We used an analytical method based on taking the difference between a mean LIBS spectrum obtained with those of GWI patients from the mean LIBS spectrum of those of the control group, to generate a “difference” spectrum for our classification model. This model was cross-validated using different numbers of differential LIBS emission peaks. A subset of 17 of the 82 atomic and ionic transitions that provided 70% of correct diagnosis was selected test in a blinded fashion using 10 additional samples and was found to yield 90% classification accuracy, 100% sensitivity, and 83.3% specificity. Of the 17 atomic and ionic transitions, eight could be assigned unambiguously to species of Na, K, and Fe. Graphical Abstract
doi_str_mv 10.1177/00037028211042049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2578779549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00037028211042049</sage_id><sourcerecordid>2578779549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ddbbef5407f1aabc6ad52dc00e04e424dbcbe77790cddfe6dcbcf78eb33373523</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9g8sqTYsV03YylQKlVigIoxcuxzlcqJU18y8O9JVTYkptPde99J7xFyz9mMc60fGWNCs3yRc85kzmRxQSa8kCITSrBLMjnp2clwTW4QD-OqCqEmZPdcm30bsUYaPV0PwdMvk-gmhBYQ6Q7rdk-3BiFlm9YNFhz96MD2ydClPQ51Gg8-xYY-hRhHzTRdALwlV94EhLvfOSW715fP1Vu2fV9vVsttZgXXfeZcVYFXkmnPjans3DiVO8sYMAkyl66yFWitC2ad8zB3trJeL6ASQmihcjElD-e_XYrHAbAvmxothGBaiAOWudKLEVeyGK38bLUpIibwZZfqxqTvkrPyVGH5p8KRmZ0ZNHsoD3FI7ZjmH-AHtS5xcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578779549</pqid></control><display><type>article</type><title>Diagnosis of Gulf War Illness Using Laser-Induced Spectra Acquired from Blood Samples</title><source>SAGE Journals</source><creator>Gaudiuso, Rosalba ; Chen, Sirui ; Kokkotou, Efi ; Conboy, Lisa ; Jacobson, Eric ; Hanlon, Eugene B. ; Melikechi, Noureddine</creator><creatorcontrib>Gaudiuso, Rosalba ; Chen, Sirui ; Kokkotou, Efi ; Conboy, Lisa ; Jacobson, Eric ; Hanlon, Eugene B. ; Melikechi, Noureddine</creatorcontrib><description>Gulf War illness (GWI) is a chronic illness with no known validated biomarkers that affects the lives of hundreds of thousands of people. As a result, there is an urgent need for the development of an untargeted and unbiased method to distinguish GWI patients from non-GWI patients. We report on the application of laser-induced breakdown spectroscopy (LIBS) to distinguish blood plasma samples from a group of subjects with GWI and from subjects with chronic low back pain as controls. We initially obtained LIBS data from blood plasma samples of four GWI patients and four non-GWI patients. We used an analytical method based on taking the difference between a mean LIBS spectrum obtained with those of GWI patients from the mean LIBS spectrum of those of the control group, to generate a “difference” spectrum for our classification model. This model was cross-validated using different numbers of differential LIBS emission peaks. A subset of 17 of the 82 atomic and ionic transitions that provided 70% of correct diagnosis was selected test in a blinded fashion using 10 additional samples and was found to yield 90% classification accuracy, 100% sensitivity, and 83.3% specificity. Of the 17 atomic and ionic transitions, eight could be assigned unambiguously to species of Na, K, and Fe. Graphical Abstract</description><identifier>ISSN: 0003-7028</identifier><identifier>EISSN: 1943-3530</identifier><identifier>DOI: 10.1177/00037028211042049</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Applied spectroscopy, 2022-08, Vol.76 (8), p.887-893</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ddbbef5407f1aabc6ad52dc00e04e424dbcbe77790cddfe6dcbcf78eb33373523</citedby><cites>FETCH-LOGICAL-c317t-ddbbef5407f1aabc6ad52dc00e04e424dbcbe77790cddfe6dcbcf78eb33373523</cites><orcidid>0000-0002-7878-8198 ; 0000-0001-5392-9225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00037028211042049$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00037028211042049$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Gaudiuso, Rosalba</creatorcontrib><creatorcontrib>Chen, Sirui</creatorcontrib><creatorcontrib>Kokkotou, Efi</creatorcontrib><creatorcontrib>Conboy, Lisa</creatorcontrib><creatorcontrib>Jacobson, Eric</creatorcontrib><creatorcontrib>Hanlon, Eugene B.</creatorcontrib><creatorcontrib>Melikechi, Noureddine</creatorcontrib><title>Diagnosis of Gulf War Illness Using Laser-Induced Spectra Acquired from Blood Samples</title><title>Applied spectroscopy</title><description>Gulf War illness (GWI) is a chronic illness with no known validated biomarkers that affects the lives of hundreds of thousands of people. As a result, there is an urgent need for the development of an untargeted and unbiased method to distinguish GWI patients from non-GWI patients. We report on the application of laser-induced breakdown spectroscopy (LIBS) to distinguish blood plasma samples from a group of subjects with GWI and from subjects with chronic low back pain as controls. We initially obtained LIBS data from blood plasma samples of four GWI patients and four non-GWI patients. We used an analytical method based on taking the difference between a mean LIBS spectrum obtained with those of GWI patients from the mean LIBS spectrum of those of the control group, to generate a “difference” spectrum for our classification model. This model was cross-validated using different numbers of differential LIBS emission peaks. A subset of 17 of the 82 atomic and ionic transitions that provided 70% of correct diagnosis was selected test in a blinded fashion using 10 additional samples and was found to yield 90% classification accuracy, 100% sensitivity, and 83.3% specificity. Of the 17 atomic and ionic transitions, eight could be assigned unambiguously to species of Na, K, and Fe. Graphical Abstract</description><issn>0003-7028</issn><issn>1943-3530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9g8sqTYsV03YylQKlVigIoxcuxzlcqJU18y8O9JVTYkptPde99J7xFyz9mMc60fGWNCs3yRc85kzmRxQSa8kCITSrBLMjnp2clwTW4QD-OqCqEmZPdcm30bsUYaPV0PwdMvk-gmhBYQ6Q7rdk-3BiFlm9YNFhz96MD2ydClPQ51Gg8-xYY-hRhHzTRdALwlV94EhLvfOSW715fP1Vu2fV9vVsttZgXXfeZcVYFXkmnPjans3DiVO8sYMAkyl66yFWitC2ad8zB3trJeL6ASQmihcjElD-e_XYrHAbAvmxothGBaiAOWudKLEVeyGK38bLUpIibwZZfqxqTvkrPyVGH5p8KRmZ0ZNHsoD3FI7ZjmH-AHtS5xcQ</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Gaudiuso, Rosalba</creator><creator>Chen, Sirui</creator><creator>Kokkotou, Efi</creator><creator>Conboy, Lisa</creator><creator>Jacobson, Eric</creator><creator>Hanlon, Eugene B.</creator><creator>Melikechi, Noureddine</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7878-8198</orcidid><orcidid>https://orcid.org/0000-0001-5392-9225</orcidid></search><sort><creationdate>202208</creationdate><title>Diagnosis of Gulf War Illness Using Laser-Induced Spectra Acquired from Blood Samples</title><author>Gaudiuso, Rosalba ; Chen, Sirui ; Kokkotou, Efi ; Conboy, Lisa ; Jacobson, Eric ; Hanlon, Eugene B. ; Melikechi, Noureddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ddbbef5407f1aabc6ad52dc00e04e424dbcbe77790cddfe6dcbcf78eb33373523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudiuso, Rosalba</creatorcontrib><creatorcontrib>Chen, Sirui</creatorcontrib><creatorcontrib>Kokkotou, Efi</creatorcontrib><creatorcontrib>Conboy, Lisa</creatorcontrib><creatorcontrib>Jacobson, Eric</creatorcontrib><creatorcontrib>Hanlon, Eugene B.</creatorcontrib><creatorcontrib>Melikechi, Noureddine</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudiuso, Rosalba</au><au>Chen, Sirui</au><au>Kokkotou, Efi</au><au>Conboy, Lisa</au><au>Jacobson, Eric</au><au>Hanlon, Eugene B.</au><au>Melikechi, Noureddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis of Gulf War Illness Using Laser-Induced Spectra Acquired from Blood Samples</atitle><jtitle>Applied spectroscopy</jtitle><date>2022-08</date><risdate>2022</risdate><volume>76</volume><issue>8</issue><spage>887</spage><epage>893</epage><pages>887-893</pages><issn>0003-7028</issn><eissn>1943-3530</eissn><abstract>Gulf War illness (GWI) is a chronic illness with no known validated biomarkers that affects the lives of hundreds of thousands of people. As a result, there is an urgent need for the development of an untargeted and unbiased method to distinguish GWI patients from non-GWI patients. We report on the application of laser-induced breakdown spectroscopy (LIBS) to distinguish blood plasma samples from a group of subjects with GWI and from subjects with chronic low back pain as controls. We initially obtained LIBS data from blood plasma samples of four GWI patients and four non-GWI patients. We used an analytical method based on taking the difference between a mean LIBS spectrum obtained with those of GWI patients from the mean LIBS spectrum of those of the control group, to generate a “difference” spectrum for our classification model. This model was cross-validated using different numbers of differential LIBS emission peaks. A subset of 17 of the 82 atomic and ionic transitions that provided 70% of correct diagnosis was selected test in a blinded fashion using 10 additional samples and was found to yield 90% classification accuracy, 100% sensitivity, and 83.3% specificity. Of the 17 atomic and ionic transitions, eight could be assigned unambiguously to species of Na, K, and Fe. Graphical Abstract</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/00037028211042049</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7878-8198</orcidid><orcidid>https://orcid.org/0000-0001-5392-9225</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-7028
ispartof Applied spectroscopy, 2022-08, Vol.76 (8), p.887-893
issn 0003-7028
1943-3530
language eng
recordid cdi_proquest_miscellaneous_2578779549
source SAGE Journals
title Diagnosis of Gulf War Illness Using Laser-Induced Spectra Acquired from Blood Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis%20of%20Gulf%20War%20Illness%20Using%20Laser-Induced%20Spectra%20Acquired%20from%20Blood%20Samples&rft.jtitle=Applied%20spectroscopy&rft.au=Gaudiuso,%20Rosalba&rft.date=2022-08&rft.volume=76&rft.issue=8&rft.spage=887&rft.epage=893&rft.pages=887-893&rft.issn=0003-7028&rft.eissn=1943-3530&rft_id=info:doi/10.1177/00037028211042049&rft_dat=%3Cproquest_cross%3E2578779549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578779549&rft_id=info:pmid/&rft_sage_id=10.1177_00037028211042049&rfr_iscdi=true