Correction of a knock-in mouse model of acrodysostosis with gene therapy using a rAAV9-CAG-human PRKAR1A vector

Acrodysostosis is a rare skeletal dysplasia caused by loss-of-function mutations in the regulatory subunit of protein kinase A (PRKAR1A). In a knock-in mouse model (PRKAR1A wt/mut ) expressing one copy of the recurrent R368X mutation, we tested the effects of a rAAV9-CAG-human PRKR1A (hPRKAR1A) vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2022-08, Vol.29 (7-8), p.441-448
Hauptverfasser: Özgür-Günes, Yasemin, Le Stunff, Catherine, Chedik, Malha, Belot, Marie-Pierre, Becker, Pierre-Hadrien, Blouin, Véronique, Bougnères, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 7-8
container_start_page 441
container_title Gene therapy
container_volume 29
creator Özgür-Günes, Yasemin
Le Stunff, Catherine
Chedik, Malha
Belot, Marie-Pierre
Becker, Pierre-Hadrien
Blouin, Véronique
Bougnères, Pierre
description Acrodysostosis is a rare skeletal dysplasia caused by loss-of-function mutations in the regulatory subunit of protein kinase A (PRKAR1A). In a knock-in mouse model (PRKAR1A wt/mut ) expressing one copy of the recurrent R368X mutation, we tested the effects of a rAAV9-CAG-human PRKR1A (hPRKAR1A) vector intravenously administered at 4 weeks of age. Caudal vertebrae and tibial diaphyses contained 0.52 ± 0.7 and 0.13 ± 0.3 vector genome per cell (VGC), respectively, at 10 weeks of age and 0.22 ± 0.04 and 0.020 ± 0.04 at 16 weeks while renal cortex contained 0.57 ± 0.14 and 0.26 ± 0.05 VGC. Vector-mediated hPRKAR1A expression was found in growth plate chondrocytes, osteoclasts, osteoblasts, and kidney tubular cells. Chondrocyte architecture was restored in the growth plates. Body length, tail length, and body weight were improved in vector treated PRKAR1A wt/mut mice, not the bone length of their limbs. These results provide one of the few proofs for gene therapy efficacy in a mouse model of chondrodysplasia. In addition, the increased urinary cAMP of PRKAR1A wt/mut mice was corrected almost to normal. In conclusion, gene therapy with hPRKAR1A improved skeletal growth and kidney dysfunction, the hallmarks of acrodysostosis in R368X mutated mice and humans.
doi_str_mv 10.1038/s41434-021-00286-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2578766153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703230489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-bba057c6eefe2395531e21c78ec99586f9a58237460d1bdaab7045810297c2833</originalsourceid><addsrcrecordid>eNp9kUtPGzEUha2qlZpS_gArS2zYuNjX7-UoamkFEggVtpbjeJKBxE7tmaL8-xqCVIkFG9-Fv3Pu4yB0wug3Rrk5r4IJLggFRigFowh8QDMmtCJSKPiIZtQqSzQD8xl9qfWBUiq0gRnK81xKDOOQE8499vgx5fBIhoS3eaqxvcu4efkJJS_3Ndcx16Hip2Fc41VMEY_rWPxuj6c6pFUzKF13b8m8uyDraesTvrm97G5Zh_-2Lrl8RZ96v6nx-LUeobsf33_Pf5Kr64tf8-6KBC5hJIuFp1IHFWMfgVspOYvAgjYxWCuN6q2XBrgWii7ZYun9QlMhDaNgdQDD-RE6O_juSv4zxTq67VBD3Gx8im0xB1IbrRSTz-jpG_QhTyW16RxoyoFTYWyj4EC1O9RaYu92Zdj6sneMuucM3CED1zJwLxk4aCJ-ENUGp1Us_63fUf0DLh6Hzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703230489</pqid></control><display><type>article</type><title>Correction of a knock-in mouse model of acrodysostosis with gene therapy using a rAAV9-CAG-human PRKAR1A vector</title><source>Alma/SFX Local Collection</source><creator>Özgür-Günes, Yasemin ; Le Stunff, Catherine ; Chedik, Malha ; Belot, Marie-Pierre ; Becker, Pierre-Hadrien ; Blouin, Véronique ; Bougnères, Pierre</creator><creatorcontrib>Özgür-Günes, Yasemin ; Le Stunff, Catherine ; Chedik, Malha ; Belot, Marie-Pierre ; Becker, Pierre-Hadrien ; Blouin, Véronique ; Bougnères, Pierre</creatorcontrib><description>Acrodysostosis is a rare skeletal dysplasia caused by loss-of-function mutations in the regulatory subunit of protein kinase A (PRKAR1A). In a knock-in mouse model (PRKAR1A wt/mut ) expressing one copy of the recurrent R368X mutation, we tested the effects of a rAAV9-CAG-human PRKR1A (hPRKAR1A) vector intravenously administered at 4 weeks of age. Caudal vertebrae and tibial diaphyses contained 0.52 ± 0.7 and 0.13 ± 0.3 vector genome per cell (VGC), respectively, at 10 weeks of age and 0.22 ± 0.04 and 0.020 ± 0.04 at 16 weeks while renal cortex contained 0.57 ± 0.14 and 0.26 ± 0.05 VGC. Vector-mediated hPRKAR1A expression was found in growth plate chondrocytes, osteoclasts, osteoblasts, and kidney tubular cells. Chondrocyte architecture was restored in the growth plates. Body length, tail length, and body weight were improved in vector treated PRKAR1A wt/mut mice, not the bone length of their limbs. These results provide one of the few proofs for gene therapy efficacy in a mouse model of chondrodysplasia. In addition, the increased urinary cAMP of PRKAR1A wt/mut mice was corrected almost to normal. In conclusion, gene therapy with hPRKAR1A improved skeletal growth and kidney dysfunction, the hallmarks of acrodysostosis in R368X mutated mice and humans.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/s41434-021-00286-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42/41 ; 42/44 ; 631/154/51 ; 631/61/201 ; 64 ; 64/60 ; Biomedical and Life Sciences ; Biomedicine ; Body length ; Body weight ; Bone dysplasia ; Cell Biology ; Chondrocytes ; Chondrodystrophy ; Gene Expression ; Gene Therapy ; Genomes ; Growth plate ; Human Genetics ; Kidney diseases ; Kinases ; Mutation ; Nanotechnology ; Osteoclasts ; Protein kinase A ; Renal cortex ; Skeleton ; Trinucleotide repeats ; Vertebrae</subject><ispartof>Gene therapy, 2022-08, Vol.29 (7-8), p.441-448</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-bba057c6eefe2395531e21c78ec99586f9a58237460d1bdaab7045810297c2833</citedby><cites>FETCH-LOGICAL-c352t-bba057c6eefe2395531e21c78ec99586f9a58237460d1bdaab7045810297c2833</cites><orcidid>0000-0003-0017-4572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Özgür-Günes, Yasemin</creatorcontrib><creatorcontrib>Le Stunff, Catherine</creatorcontrib><creatorcontrib>Chedik, Malha</creatorcontrib><creatorcontrib>Belot, Marie-Pierre</creatorcontrib><creatorcontrib>Becker, Pierre-Hadrien</creatorcontrib><creatorcontrib>Blouin, Véronique</creatorcontrib><creatorcontrib>Bougnères, Pierre</creatorcontrib><title>Correction of a knock-in mouse model of acrodysostosis with gene therapy using a rAAV9-CAG-human PRKAR1A vector</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><description>Acrodysostosis is a rare skeletal dysplasia caused by loss-of-function mutations in the regulatory subunit of protein kinase A (PRKAR1A). In a knock-in mouse model (PRKAR1A wt/mut ) expressing one copy of the recurrent R368X mutation, we tested the effects of a rAAV9-CAG-human PRKR1A (hPRKAR1A) vector intravenously administered at 4 weeks of age. Caudal vertebrae and tibial diaphyses contained 0.52 ± 0.7 and 0.13 ± 0.3 vector genome per cell (VGC), respectively, at 10 weeks of age and 0.22 ± 0.04 and 0.020 ± 0.04 at 16 weeks while renal cortex contained 0.57 ± 0.14 and 0.26 ± 0.05 VGC. Vector-mediated hPRKAR1A expression was found in growth plate chondrocytes, osteoclasts, osteoblasts, and kidney tubular cells. Chondrocyte architecture was restored in the growth plates. Body length, tail length, and body weight were improved in vector treated PRKAR1A wt/mut mice, not the bone length of their limbs. These results provide one of the few proofs for gene therapy efficacy in a mouse model of chondrodysplasia. In addition, the increased urinary cAMP of PRKAR1A wt/mut mice was corrected almost to normal. In conclusion, gene therapy with hPRKAR1A improved skeletal growth and kidney dysfunction, the hallmarks of acrodysostosis in R368X mutated mice and humans.</description><subject>42/41</subject><subject>42/44</subject><subject>631/154/51</subject><subject>631/61/201</subject><subject>64</subject><subject>64/60</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body length</subject><subject>Body weight</subject><subject>Bone dysplasia</subject><subject>Cell Biology</subject><subject>Chondrocytes</subject><subject>Chondrodystrophy</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genomes</subject><subject>Growth plate</subject><subject>Human Genetics</subject><subject>Kidney diseases</subject><subject>Kinases</subject><subject>Mutation</subject><subject>Nanotechnology</subject><subject>Osteoclasts</subject><subject>Protein kinase A</subject><subject>Renal cortex</subject><subject>Skeleton</subject><subject>Trinucleotide repeats</subject><subject>Vertebrae</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtPGzEUha2qlZpS_gArS2zYuNjX7-UoamkFEggVtpbjeJKBxE7tmaL8-xqCVIkFG9-Fv3Pu4yB0wug3Rrk5r4IJLggFRigFowh8QDMmtCJSKPiIZtQqSzQD8xl9qfWBUiq0gRnK81xKDOOQE8499vgx5fBIhoS3eaqxvcu4efkJJS_3Ndcx16Hip2Fc41VMEY_rWPxuj6c6pFUzKF13b8m8uyDraesTvrm97G5Zh_-2Lrl8RZ96v6nx-LUeobsf33_Pf5Kr64tf8-6KBC5hJIuFp1IHFWMfgVspOYvAgjYxWCuN6q2XBrgWii7ZYun9QlMhDaNgdQDD-RE6O_juSv4zxTq67VBD3Gx8im0xB1IbrRSTz-jpG_QhTyW16RxoyoFTYWyj4EC1O9RaYu92Zdj6sneMuucM3CED1zJwLxk4aCJ-ENUGp1Us_63fUf0DLh6Hzg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Özgür-Günes, Yasemin</creator><creator>Le Stunff, Catherine</creator><creator>Chedik, Malha</creator><creator>Belot, Marie-Pierre</creator><creator>Becker, Pierre-Hadrien</creator><creator>Blouin, Véronique</creator><creator>Bougnères, Pierre</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0017-4572</orcidid></search><sort><creationdate>20220801</creationdate><title>Correction of a knock-in mouse model of acrodysostosis with gene therapy using a rAAV9-CAG-human PRKAR1A vector</title><author>Özgür-Günes, Yasemin ; Le Stunff, Catherine ; Chedik, Malha ; Belot, Marie-Pierre ; Becker, Pierre-Hadrien ; Blouin, Véronique ; Bougnères, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-bba057c6eefe2395531e21c78ec99586f9a58237460d1bdaab7045810297c2833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>42/41</topic><topic>42/44</topic><topic>631/154/51</topic><topic>631/61/201</topic><topic>64</topic><topic>64/60</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body length</topic><topic>Body weight</topic><topic>Bone dysplasia</topic><topic>Cell Biology</topic><topic>Chondrocytes</topic><topic>Chondrodystrophy</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genomes</topic><topic>Growth plate</topic><topic>Human Genetics</topic><topic>Kidney diseases</topic><topic>Kinases</topic><topic>Mutation</topic><topic>Nanotechnology</topic><topic>Osteoclasts</topic><topic>Protein kinase A</topic><topic>Renal cortex</topic><topic>Skeleton</topic><topic>Trinucleotide repeats</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Özgür-Günes, Yasemin</creatorcontrib><creatorcontrib>Le Stunff, Catherine</creatorcontrib><creatorcontrib>Chedik, Malha</creatorcontrib><creatorcontrib>Belot, Marie-Pierre</creatorcontrib><creatorcontrib>Becker, Pierre-Hadrien</creatorcontrib><creatorcontrib>Blouin, Véronique</creatorcontrib><creatorcontrib>Bougnères, Pierre</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Özgür-Günes, Yasemin</au><au>Le Stunff, Catherine</au><au>Chedik, Malha</au><au>Belot, Marie-Pierre</au><au>Becker, Pierre-Hadrien</au><au>Blouin, Véronique</au><au>Bougnères, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction of a knock-in mouse model of acrodysostosis with gene therapy using a rAAV9-CAG-human PRKAR1A vector</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>29</volume><issue>7-8</issue><spage>441</spage><epage>448</epage><pages>441-448</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Acrodysostosis is a rare skeletal dysplasia caused by loss-of-function mutations in the regulatory subunit of protein kinase A (PRKAR1A). In a knock-in mouse model (PRKAR1A wt/mut ) expressing one copy of the recurrent R368X mutation, we tested the effects of a rAAV9-CAG-human PRKR1A (hPRKAR1A) vector intravenously administered at 4 weeks of age. Caudal vertebrae and tibial diaphyses contained 0.52 ± 0.7 and 0.13 ± 0.3 vector genome per cell (VGC), respectively, at 10 weeks of age and 0.22 ± 0.04 and 0.020 ± 0.04 at 16 weeks while renal cortex contained 0.57 ± 0.14 and 0.26 ± 0.05 VGC. Vector-mediated hPRKAR1A expression was found in growth plate chondrocytes, osteoclasts, osteoblasts, and kidney tubular cells. Chondrocyte architecture was restored in the growth plates. Body length, tail length, and body weight were improved in vector treated PRKAR1A wt/mut mice, not the bone length of their limbs. These results provide one of the few proofs for gene therapy efficacy in a mouse model of chondrodysplasia. In addition, the increased urinary cAMP of PRKAR1A wt/mut mice was corrected almost to normal. In conclusion, gene therapy with hPRKAR1A improved skeletal growth and kidney dysfunction, the hallmarks of acrodysostosis in R368X mutated mice and humans.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41434-021-00286-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0017-4572</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2022-08, Vol.29 (7-8), p.441-448
issn 0969-7128
1476-5462
language eng
recordid cdi_proquest_miscellaneous_2578766153
source Alma/SFX Local Collection
subjects 42/41
42/44
631/154/51
631/61/201
64
64/60
Biomedical and Life Sciences
Biomedicine
Body length
Body weight
Bone dysplasia
Cell Biology
Chondrocytes
Chondrodystrophy
Gene Expression
Gene Therapy
Genomes
Growth plate
Human Genetics
Kidney diseases
Kinases
Mutation
Nanotechnology
Osteoclasts
Protein kinase A
Renal cortex
Skeleton
Trinucleotide repeats
Vertebrae
title Correction of a knock-in mouse model of acrodysostosis with gene therapy using a rAAV9-CAG-human PRKAR1A vector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction%20of%20a%20knock-in%20mouse%20model%20of%20acrodysostosis%20with%20gene%20therapy%20using%20a%20rAAV9-CAG-human%20PRKAR1A%20vector&rft.jtitle=Gene%20therapy&rft.au=%C3%96zg%C3%BCr-G%C3%BCnes,%20Yasemin&rft.date=2022-08-01&rft.volume=29&rft.issue=7-8&rft.spage=441&rft.epage=448&rft.pages=441-448&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/s41434-021-00286-2&rft_dat=%3Cproquest_cross%3E2703230489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703230489&rft_id=info:pmid/&rfr_iscdi=true