Neural networks and their applications in component design data retrieval

Neural networks have gained increased importance in the past few years. One of the basic characteristics of neural networks is the property of associative memory. In this paper we study the possibility of using the ideas of neural networks and associative memory in the manufacturing domain, with spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 1990-06, Vol.1 (2), p.125-140
Hauptverfasser: Kamarthi, Sagar V., Kumara, Soundarr T., Yu, Francis T. S., Ham, Inyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 2
container_start_page 125
container_title Journal of intelligent manufacturing
container_volume 1
creator Kamarthi, Sagar V.
Kumara, Soundarr T.
Yu, Francis T. S.
Ham, Inyong
description Neural networks have gained increased importance in the past few years. One of the basic characteristics of neural networks is the property of associative memory. In this paper we study the possibility of using the ideas of neural networks and associative memory in the manufacturing domain, with specific reference to design data retrieval in group technology. A two-layer feed-forward perceptron with backpropagation is simulated on a Vax-8550 to train example parts. The complete scheme along with the simulation results are explained and future directions indicated.
doi_str_mv 10.1007/BF01472509
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25784066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25784066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-d7e2e7913d49d2ad9d1e09c10c001f0d782922d50b46f61e55b5836f729c823</originalsourceid><addsrcrecordid>eNpFkLFOwzAUAC0EEqGw8AWeGJACz05sxyNUFCpVMMAeufYLGFI72C6IvwdUJKZbTjccIacMLhiAurxeAGsVF6D3SMWE4nXHWrFPKtBC1kIwcUiOcn4FAN1JVpHlPW6TGWnA8hnTW6YmOFpe0Cdqpmn01hQfQ6Y-UBs3UwwYCnWY_XOgzhRDE5bk8cOMx-RgMGPGkz_OyOPi5ml-V68ebpfzq1VtuYRSO4UclWaNa7XjxmnHELRlYAHYAE51XHPuBKxbOUiGQqxF18hBcW073szI2a46pfi-xVz6jc8Wx9EEjNvcc6G6FqT8Ec93ok0x54RDPyW_MemrZ9D_vur_XzXfazJbhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25784066</pqid></control><display><type>article</type><title>Neural networks and their applications in component design data retrieval</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kamarthi, Sagar V. ; Kumara, Soundarr T. ; Yu, Francis T. S. ; Ham, Inyong</creator><creatorcontrib>Kamarthi, Sagar V. ; Kumara, Soundarr T. ; Yu, Francis T. S. ; Ham, Inyong</creatorcontrib><description>Neural networks have gained increased importance in the past few years. One of the basic characteristics of neural networks is the property of associative memory. In this paper we study the possibility of using the ideas of neural networks and associative memory in the manufacturing domain, with specific reference to design data retrieval in group technology. A two-layer feed-forward perceptron with backpropagation is simulated on a Vax-8550 to train example parts. The complete scheme along with the simulation results are explained and future directions indicated.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/BF01472509</identifier><language>eng</language><ispartof>Journal of intelligent manufacturing, 1990-06, Vol.1 (2), p.125-140</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-d7e2e7913d49d2ad9d1e09c10c001f0d782922d50b46f61e55b5836f729c823</citedby><cites>FETCH-LOGICAL-c260t-d7e2e7913d49d2ad9d1e09c10c001f0d782922d50b46f61e55b5836f729c823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kamarthi, Sagar V.</creatorcontrib><creatorcontrib>Kumara, Soundarr T.</creatorcontrib><creatorcontrib>Yu, Francis T. S.</creatorcontrib><creatorcontrib>Ham, Inyong</creatorcontrib><title>Neural networks and their applications in component design data retrieval</title><title>Journal of intelligent manufacturing</title><description>Neural networks have gained increased importance in the past few years. One of the basic characteristics of neural networks is the property of associative memory. In this paper we study the possibility of using the ideas of neural networks and associative memory in the manufacturing domain, with specific reference to design data retrieval in group technology. A two-layer feed-forward perceptron with backpropagation is simulated on a Vax-8550 to train example parts. The complete scheme along with the simulation results are explained and future directions indicated.</description><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpFkLFOwzAUAC0EEqGw8AWeGJACz05sxyNUFCpVMMAeufYLGFI72C6IvwdUJKZbTjccIacMLhiAurxeAGsVF6D3SMWE4nXHWrFPKtBC1kIwcUiOcn4FAN1JVpHlPW6TGWnA8hnTW6YmOFpe0Cdqpmn01hQfQ6Y-UBs3UwwYCnWY_XOgzhRDE5bk8cOMx-RgMGPGkz_OyOPi5ml-V68ebpfzq1VtuYRSO4UclWaNa7XjxmnHELRlYAHYAE51XHPuBKxbOUiGQqxF18hBcW073szI2a46pfi-xVz6jc8Wx9EEjNvcc6G6FqT8Ec93ok0x54RDPyW_MemrZ9D_vur_XzXfazJbhQ</recordid><startdate>19900601</startdate><enddate>19900601</enddate><creator>Kamarthi, Sagar V.</creator><creator>Kumara, Soundarr T.</creator><creator>Yu, Francis T. S.</creator><creator>Ham, Inyong</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19900601</creationdate><title>Neural networks and their applications in component design data retrieval</title><author>Kamarthi, Sagar V. ; Kumara, Soundarr T. ; Yu, Francis T. S. ; Ham, Inyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-d7e2e7913d49d2ad9d1e09c10c001f0d782922d50b46f61e55b5836f729c823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamarthi, Sagar V.</creatorcontrib><creatorcontrib>Kumara, Soundarr T.</creatorcontrib><creatorcontrib>Yu, Francis T. S.</creatorcontrib><creatorcontrib>Ham, Inyong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamarthi, Sagar V.</au><au>Kumara, Soundarr T.</au><au>Yu, Francis T. S.</au><au>Ham, Inyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural networks and their applications in component design data retrieval</atitle><jtitle>Journal of intelligent manufacturing</jtitle><date>1990-06-01</date><risdate>1990</risdate><volume>1</volume><issue>2</issue><spage>125</spage><epage>140</epage><pages>125-140</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Neural networks have gained increased importance in the past few years. One of the basic characteristics of neural networks is the property of associative memory. In this paper we study the possibility of using the ideas of neural networks and associative memory in the manufacturing domain, with specific reference to design data retrieval in group technology. A two-layer feed-forward perceptron with backpropagation is simulated on a Vax-8550 to train example parts. The complete scheme along with the simulation results are explained and future directions indicated.</abstract><doi>10.1007/BF01472509</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 1990-06, Vol.1 (2), p.125-140
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_miscellaneous_25784066
source SpringerLink Journals - AutoHoldings
title Neural networks and their applications in component design data retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20networks%20and%20their%20applications%20in%20component%20design%20data%20retrieval&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Kamarthi,%20Sagar%20V.&rft.date=1990-06-01&rft.volume=1&rft.issue=2&rft.spage=125&rft.epage=140&rft.pages=125-140&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/BF01472509&rft_dat=%3Cproquest_cross%3E25784066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25784066&rft_id=info:pmid/&rfr_iscdi=true