Influence of the POuN4−u structural units on the formation energies and transport properties of lithium phosphorus oxynitride: a DFT study

The potential of mobile applications for digital networking is constantly increasing. A key challenge is to ensure a reliable and long-term power supply. One possible solution is the use of all-solid-state thin-film lithium batteries which use amorphous lithium phosphorus oxynitride (LIPON) as solid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-10, Vol.23 (39), p.22567-22588
Hauptverfasser: Henkel, Pascal, Janek, Jürgen, Mollenhauer, Doreen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22588
container_issue 39
container_start_page 22567
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Henkel, Pascal
Janek, Jürgen
Mollenhauer, Doreen
description The potential of mobile applications for digital networking is constantly increasing. A key challenge is to ensure a reliable and long-term power supply. One possible solution is the use of all-solid-state thin-film lithium batteries which use amorphous lithium phosphorus oxynitride (LIPON) as solid electrolyte. It is well known that the electrochemical properties of this material are related to the amorphous state, which correlates with the nitrogen content. Due to the difficulty of calculating amorphous structures using first principles methods, three different LIPON structure models are considered in this study and the influence of the anion POuN4−u sublattice on the Li vacancy and Li interstitial formation as well as on the lithium ion transport is highlighted. While for all three model systems the migration energies of the energetically preferred Li vacancies increase with increasing complexity of the anion POuN4−u sublattice only slightly from 0.38 eV to 0.55 eV, the migration energies for the energetically preferred Li interstitials decrease with increasing complexity of the anion POuN4−u sublattice from 0.68 eV to 0.38 eV. Thus, it was found that the energetically preferred lithium ion (Li vacancy and Li interstitial ion) transport mechanism in LIPON can be explained on the basis of the present POuN4−u structural units. In the presence of isolated PON3x− tetrahedra or periodic PO2N2 chains, the lithium vacancy diffusion dominates, whereas in the presence of periodic POuN4−u planes, the lithium interstitial diffusion becomes dominant.
doi_str_mv 10.1039/d1cp01294k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2578154674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578154674</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-2c9ada4df70df97d2e294e5b45a2695c023d663ee0a848d3291ef1354a01e11b3</originalsourceid><addsrcrecordid>eNpdj7lOAzEQhi0EEiHQ8ASWaGgWfO5BhwKBSBGhCHXkrGfJho29-JDIG1BQ8Yg8CeYQBcVork___IPQMSVnlPDqXNO6J5RV4mkHDajIeVaRUuz-1UW-jw68XxNCqKR8gN4mpukimBqwbXBYAb6fxTvx8foesQ8u1iE61eFo2uCxNd9EY91GhTZ1YMA9tuCxMhoHp4zvrQu4d7YHF74WSbRrw6qNG9yvrE_hYpq-bJOgazVcYIWvxvN0K-rtIdprVOfh6DcP0cP4ej66zaazm8nocpr16Y2QsbpSWgndFEQ3VaEZpIdBLoVULK9kTRjXec4BiCpFqTmrKDSUS6EIBUqXfIhOf3ST0ecIPiw2ra-h65QBG_2CyaKkUuSFSOjJP3RtozPJXaISRFleFPwT9ah2HA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581512677</pqid></control><display><type>article</type><title>Influence of the POuN4−u structural units on the formation energies and transport properties of lithium phosphorus oxynitride: a DFT study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Henkel, Pascal ; Janek, Jürgen ; Mollenhauer, Doreen</creator><creatorcontrib>Henkel, Pascal ; Janek, Jürgen ; Mollenhauer, Doreen</creatorcontrib><description>The potential of mobile applications for digital networking is constantly increasing. A key challenge is to ensure a reliable and long-term power supply. One possible solution is the use of all-solid-state thin-film lithium batteries which use amorphous lithium phosphorus oxynitride (LIPON) as solid electrolyte. It is well known that the electrochemical properties of this material are related to the amorphous state, which correlates with the nitrogen content. Due to the difficulty of calculating amorphous structures using first principles methods, three different LIPON structure models are considered in this study and the influence of the anion POuN4−u sublattice on the Li vacancy and Li interstitial formation as well as on the lithium ion transport is highlighted. While for all three model systems the migration energies of the energetically preferred Li vacancies increase with increasing complexity of the anion POuN4−u sublattice only slightly from 0.38 eV to 0.55 eV, the migration energies for the energetically preferred Li interstitials decrease with increasing complexity of the anion POuN4−u sublattice from 0.68 eV to 0.38 eV. Thus, it was found that the energetically preferred lithium ion (Li vacancy and Li interstitial ion) transport mechanism in LIPON can be explained on the basis of the present POuN4−u structural units. In the presence of isolated PON3x− tetrahedra or periodic PO2N2 chains, the lithium vacancy diffusion dominates, whereas in the presence of periodic POuN4−u planes, the lithium interstitial diffusion becomes dominant.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp01294k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amorphous materials ; Anions ; Applications programs ; Complexity ; Electrochemical analysis ; First principles ; Free energy ; Heat of formation ; Interstitials ; Ion transport ; Lithium ; Lithium batteries ; Lithium ions ; Mobile computing ; Phosphorus ; Solid electrolytes ; Tetrahedra ; Transport properties ; Vacancies</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-10, Vol.23 (39), p.22567-22588</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Henkel, Pascal</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><creatorcontrib>Mollenhauer, Doreen</creatorcontrib><title>Influence of the POuN4−u structural units on the formation energies and transport properties of lithium phosphorus oxynitride: a DFT study</title><title>Physical chemistry chemical physics : PCCP</title><description>The potential of mobile applications for digital networking is constantly increasing. A key challenge is to ensure a reliable and long-term power supply. One possible solution is the use of all-solid-state thin-film lithium batteries which use amorphous lithium phosphorus oxynitride (LIPON) as solid electrolyte. It is well known that the electrochemical properties of this material are related to the amorphous state, which correlates with the nitrogen content. Due to the difficulty of calculating amorphous structures using first principles methods, three different LIPON structure models are considered in this study and the influence of the anion POuN4−u sublattice on the Li vacancy and Li interstitial formation as well as on the lithium ion transport is highlighted. While for all three model systems the migration energies of the energetically preferred Li vacancies increase with increasing complexity of the anion POuN4−u sublattice only slightly from 0.38 eV to 0.55 eV, the migration energies for the energetically preferred Li interstitials decrease with increasing complexity of the anion POuN4−u sublattice from 0.68 eV to 0.38 eV. Thus, it was found that the energetically preferred lithium ion (Li vacancy and Li interstitial ion) transport mechanism in LIPON can be explained on the basis of the present POuN4−u structural units. In the presence of isolated PON3x− tetrahedra or periodic PO2N2 chains, the lithium vacancy diffusion dominates, whereas in the presence of periodic POuN4−u planes, the lithium interstitial diffusion becomes dominant.</description><subject>Amorphous materials</subject><subject>Anions</subject><subject>Applications programs</subject><subject>Complexity</subject><subject>Electrochemical analysis</subject><subject>First principles</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Interstitials</subject><subject>Ion transport</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium ions</subject><subject>Mobile computing</subject><subject>Phosphorus</subject><subject>Solid electrolytes</subject><subject>Tetrahedra</subject><subject>Transport properties</subject><subject>Vacancies</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdj7lOAzEQhi0EEiHQ8ASWaGgWfO5BhwKBSBGhCHXkrGfJho29-JDIG1BQ8Yg8CeYQBcVork___IPQMSVnlPDqXNO6J5RV4mkHDajIeVaRUuz-1UW-jw68XxNCqKR8gN4mpukimBqwbXBYAb6fxTvx8foesQ8u1iE61eFo2uCxNd9EY91GhTZ1YMA9tuCxMhoHp4zvrQu4d7YHF74WSbRrw6qNG9yvrE_hYpq-bJOgazVcYIWvxvN0K-rtIdprVOfh6DcP0cP4ej66zaazm8nocpr16Y2QsbpSWgndFEQ3VaEZpIdBLoVULK9kTRjXec4BiCpFqTmrKDSUS6EIBUqXfIhOf3ST0ecIPiw2ra-h65QBG_2CyaKkUuSFSOjJP3RtozPJXaISRFleFPwT9ah2HA</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Henkel, Pascal</creator><creator>Janek, Jürgen</creator><creator>Mollenhauer, Doreen</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20211013</creationdate><title>Influence of the POuN4−u structural units on the formation energies and transport properties of lithium phosphorus oxynitride: a DFT study</title><author>Henkel, Pascal ; Janek, Jürgen ; Mollenhauer, Doreen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-2c9ada4df70df97d2e294e5b45a2695c023d663ee0a848d3291ef1354a01e11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous materials</topic><topic>Anions</topic><topic>Applications programs</topic><topic>Complexity</topic><topic>Electrochemical analysis</topic><topic>First principles</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Interstitials</topic><topic>Ion transport</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium ions</topic><topic>Mobile computing</topic><topic>Phosphorus</topic><topic>Solid electrolytes</topic><topic>Tetrahedra</topic><topic>Transport properties</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henkel, Pascal</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><creatorcontrib>Mollenhauer, Doreen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henkel, Pascal</au><au>Janek, Jürgen</au><au>Mollenhauer, Doreen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the POuN4−u structural units on the formation energies and transport properties of lithium phosphorus oxynitride: a DFT study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-10-13</date><risdate>2021</risdate><volume>23</volume><issue>39</issue><spage>22567</spage><epage>22588</epage><pages>22567-22588</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The potential of mobile applications for digital networking is constantly increasing. A key challenge is to ensure a reliable and long-term power supply. One possible solution is the use of all-solid-state thin-film lithium batteries which use amorphous lithium phosphorus oxynitride (LIPON) as solid electrolyte. It is well known that the electrochemical properties of this material are related to the amorphous state, which correlates with the nitrogen content. Due to the difficulty of calculating amorphous structures using first principles methods, three different LIPON structure models are considered in this study and the influence of the anion POuN4−u sublattice on the Li vacancy and Li interstitial formation as well as on the lithium ion transport is highlighted. While for all three model systems the migration energies of the energetically preferred Li vacancies increase with increasing complexity of the anion POuN4−u sublattice only slightly from 0.38 eV to 0.55 eV, the migration energies for the energetically preferred Li interstitials decrease with increasing complexity of the anion POuN4−u sublattice from 0.68 eV to 0.38 eV. Thus, it was found that the energetically preferred lithium ion (Li vacancy and Li interstitial ion) transport mechanism in LIPON can be explained on the basis of the present POuN4−u structural units. In the presence of isolated PON3x− tetrahedra or periodic PO2N2 chains, the lithium vacancy diffusion dominates, whereas in the presence of periodic POuN4−u planes, the lithium interstitial diffusion becomes dominant.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp01294k</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-10, Vol.23 (39), p.22567-22588
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2578154674
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Amorphous materials
Anions
Applications programs
Complexity
Electrochemical analysis
First principles
Free energy
Heat of formation
Interstitials
Ion transport
Lithium
Lithium batteries
Lithium ions
Mobile computing
Phosphorus
Solid electrolytes
Tetrahedra
Transport properties
Vacancies
title Influence of the POuN4−u structural units on the formation energies and transport properties of lithium phosphorus oxynitride: a DFT study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20POuN4%E2%88%92u%20structural%20units%20on%20the%20formation%20energies%20and%20transport%20properties%20of%20lithium%20phosphorus%20oxynitride:%20a%20DFT%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Henkel,%20Pascal&rft.date=2021-10-13&rft.volume=23&rft.issue=39&rft.spage=22567&rft.epage=22588&rft.pages=22567-22588&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp01294k&rft_dat=%3Cproquest%3E2578154674%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581512677&rft_id=info:pmid/&rfr_iscdi=true